Sáng kiến kinh nghiệm Ứng dụng định lý Vi-ét trong giải toán
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Ứng dụng định lý Vi-ét trong giải toán", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- sang_kien_kinh_nghiem_ung_dung_dinh_ly_vi_et_trong_giai_toan.doc
Nội dung text: Sáng kiến kinh nghiệm Ứng dụng định lý Vi-ét trong giải toán
- Chuyªn ®Ò øng dông ®Þnh lý vi-Ðt trong gi¶i to¸n - §Æng TiÒn Giang CỘNG HOÀ Xà HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc Cao Lộc, ngày 16 tháng 3 năm 2010 BÁO CÁO SÁNG KIẾN KINH NGHIỆM Năm học 2009 - 2010 CHUYÊN ĐỀ : ỨNG DỤNG ĐỊNH LÝ VI-ÉT TRONG GIẢI TOÁN Họ và tên: Đặng Tiền Giang Tổ : Toán Trường : THPT Cao Lộc LẠNG SƠN, THÁNG 3 NĂM 2010
- Chuyªn ®Ò øng dông ®Þnh lý vi-Ðt trong gi¶i to¸n - §Æng TiÒn Giang A. MỞ ĐẦU Chuyên đề ứng dụng định lý vi-ét nằm trong Nội dung chính của chuyên đề gồm : I. Ứng dụng 1 Nhẩm nghiệm của phương trình bậc hai một ẩn II. Ứng dụng 2 Lập phương trình bậc hai III. Ứng dụng 3 Tìm hai số biết tổng và tích của chúng IV. Ứng dụng 4 Tính giá trị của biểu thức nghiệm của phương trình V. Ứng dụng 5 Tìm hệ thức liên hệ giữa hai nghiệm của phương trình sao cho hai nghiệm này không phụ thuộc vào tham số VI. Ứng dụng 6 Tìm giá trị tham số của phương trình thỏa mãn biểu thức chứa nghiệm VII. Ứng dụng 7 Xác định dấu các nghiệm của phương trình bậc hai VIII. Ứng dụng 8 Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức nghiệm B. NỘI DUNG CHUYÊN ĐỀ : ỨNG DỤNG CỦA HỆ THỨC VI-ÉT TRONG GIẢI TOÁN Cho phương trình bậc hai: ax2 + bx + c = 0 (a 0) (*) b b Có hai nghiệm x ; x 1 2a 2 2a b b 2b b Suy ra: x x 1 2 2a 2a a ( b )( b ) b2 4ac c x x 1 2 4a2 4a2 4a2 a b Vậy đặt : - Tổng nghiệm là S : S = x x 1 2 a c - Tích nghiệm là P : P = x x 1 2 a Như vậy ta thấy giữa hai nghiệm của phương trình (*) có liên quan chặt chẽ với các hệ số a, b, c. Đây chính là nội dung của Định lí VI-ÉT, sau đây ta tìm hiểu một số ứng dụng của định lí này trong giải toán. I. NHẨM NGHIỆM CỦA PHƯƠNG TRÌNH : 1. Dạng đặc biệt: Xét phương trình (*) ta thấy :
- Chuyªn ®Ò øng dông ®Þnh lý vi-Ðt trong gi¶i to¸n - §Æng TiÒn Giang a) Nếu cho x = 1 thì ta có (*) a.12 + b.1 + c = 0 a + b + c = 0 c Như vây phương trình có một nghiệm x 1 và nghiệm còn lại là x 1 2 a b) Nếu cho x = 1 thì ta có (*) a.( 1)2 + b( 1) + c = 0 a b + c = 0 c Như vậy phương trình có một nghiệm là x 1 và nghiệm còn lại là x 1 2 a Ví dụ: Dùng hệ thức VI-ÉT để nhẩm nghiệm của các phương trình sau: 1) 2x2 5x 3 0 (1) 2) 3x2 8x 11 0 (2) Ta thấy : 3 Phương trình (1) có dạng a b + c = 0 nên có nghiệm x 1 và x 1 2 2 11 Phương trình (2) có dạng a + b + c = 0 nên có nghiệm x 1 và x 1 2 3 Bài tập áp dụng: Hãy tìm nhanh nghiệm của các phương trình sau: 1. 35x2 37x 2 0 2. 7x2 500x 507 0 3. x2 49x 50 0 4. 4321x2 21x 4300 0 2. Cho phương trình , có một hệ số chưa biết, cho trước một nghiệm tìm nghiệm còn lại và chỉ ra hệ số của phương trình : Vídụ: a) Phương trình x2 2 px 5 0 . Có một nghiệm bằng 2, tìm p và nghiệm thứ hai. b) Phương trình x2 5x q 0 có một nghiệm bằng 5, tìm q và nghiệm thứ hai. c) Cho phương trình : x2 7x q 0 , biết hiệu 2 nghiệm bằng 11. Tìm q và hai nghiệm của phương trình. d) Tìm q và hai nghiệm của phương trình : x2 qx 50 0 , biết phương trình có 2 nghiệm và có một nghiệm bằng 2 lần nghiệm kia. Bài giải: a) Thay x1 2 v à phương trình ban đ ầu ta đ ư ợc : 1 4 4 p 5 0 p 4 5 5 T ừ x1x2 5 suy ra x2 x1 2 b) Thay x1 5 v à phương trình ban đ ầu ta đ ư ợc 25 25 q 0 q 50 50 50 T ừ x1x2 50 suy ra x2 10 x1 5 c) Vì vai trò của x1 và x2 bình đẳng nên theo đề bài giả sử x1 x2 11 và theo VI-ÉT ta có x1 x2 7 , ta x1 x2 11 x1 9 giải hệ sau: x1 x2 7 x2 2 Suy ra q x1x2 18 d) Vì vai trò của x1 và x2 bình đẳng nên theo đề bài giả sử x1 2x2 và theo VI-ÉT ta có x1x2 50 . Suy ra 2 2 2 x2 5 2x2 50 x2 5 x2 5
- Chuyªn ®Ò øng dông ®Þnh lý vi-Ðt trong gi¶i to¸n - §Æng TiÒn Giang Với x2 5 th ì x1 10 Với x2 5 th ì x1 10 II. LẬP PHƯƠNG TRÌNH BẬC HAI 1. Lập phương trình bậc hai khi biết hai nghiệm x1; x2 Ví dụ : Cho x1 3; x2 2 lập một phương trình bậc hai chứa hai nghiệm trên S x1 x2 5 Theo hệ thức VI-ÉT ta có vậy x1; x2 là nghiệm của phương trình có dạng: P x1x2 6 x2 Sx P 0 x2 5x 6 0 Bài tập áp dụng: 1. x1 = 8 vµ x2 = -3 2. x1 = 3a vµ x2 = a 3. x1 = 36 vµ x2 = -104 4. x1 = 1 2 vµ x2 = 1 2 2. Lập phương trình bậc hai có hai nghiệm thoả mãn biểu thức chứa hai nghiệm của một phương trình cho trước: 2 V í dụ: Cho phương trình : x 3x 2 0 có 2 nghiệm phân biệt x1; x2 . Không giải phương trình trên, hãy 1 1 lập phương trình bậc 2 có ẩn là y thoả mãn : y1 x2 và y2 x1 x1 x2 Theo h ệ th ức VI- ÉT ta c ó: 1 1 1 1 x1 x2 3 9 S y1 y2 x2 x1 (x1 x2 ) (x1 x2 ) 3 x1 x2 x1 x2 x1x2 2 2 1 1 1 1 9 P y1 y2 (x2 )(x1 ) x1x2 1 1 2 1 1 x1 x2 x1x2 2 2 Vậy phương trình cần lập có dạng: y2 Sy P 0 9 9 hay y2 y 0 2y2 9y 9 0 2 2 Bài tập áp dụng: 2 1/ Cho phương trình 3x 5x 6 0 có 2 nghiệm phân biệt x1; x2 . Không giải phương trình, Hãy lập 1 1 phương trình bậc hai có các nghiệm y1 x1 và y2 x2 x2 x1 5 1 (Đáp số: y2 y 0 hay 6y2 5y 3 0 ) 6 2 2 2/ Cho phương trình : x 5x 1 0 có 2 nghiệm x1; x2 . Hãy lập phương trình bậc 2 có ẩn y thoả mãn 4 4 y1 x1 và y2 x2 (có nghiệm là luỹ thừa bậc 4 của các nghiệm của phương trình đã cho). (Đáp số : y2 727y 1 0 ) 2 2 3/ Cho phương trình bậc hai: x 2x m 0 có các nghiệm x1; x2 . Hãy lập phương trình bậc hai có các nghiệm y1; y2 sao cho :
- Chuyªn ®Ò øng dông ®Þnh lý vi-Ðt trong gi¶i to¸n - §Æng TiÒn Giang a) y1 x1 3 và y2 x2 3 b) y1 2x1 1 và y2 2x2 1 (Đáp số a) y2 4y 3 m2 0 b) y2 2y (4m2 3) 0 ) III. TÌM HAI SỐ BIẾT TỔNG VÀ TÍCH CỦA CHÚNG Nếu hai số có Tổng bằng S và Tích bằng P thì hai số đó là hai nghiệm của phương trình : x2 Sx P 0 (điều kiện để có hai số đó là S2 4P 0 ) Ví dụ : Tìm hai số a, b biết tổng S = a + b = 3 và tích P = ab = 4 Vì a + b = 3 và ab = 4 n ên a, b là nghiệm của phương trình : x2 3x 4 0 giải phương trình trên ta được x1 1 và x2 4 Vậy nếu a = 1 thì b = 4 nếu a = 4 thì b = 1 Bài tập áp dụng: Tìm 2 số a và b biết Tổng S và Tích P 1. S = 3 và P = 2 2. S = 3 và P = 6 3. S = 9 và P = 20 4. S = 2x và P = x2 y2 Bài tập nâng cao: Tìm 2 số a và b biết 1. a + b = 9 và a2 + b2 = 41 2. a b = 5 và ab = 36 3. a2 + b2 = 61 v à ab = 30 Hướng dẫn: 1) Theo đề bài đã biết tổng của hai số a và b , vậy để áp dụng hệ thức VI- ÉT thì cần tìm tích của a v à b. 2 2 2 81 a b T ừ a b 9 a b 81 a2 2ab b2 81 ab 20 2 2 x1 4 Suy ra : a, b là nghiệm của phương trình có dạng : x 9x 20 0 x2 5 Vậy: Nếu a = 4 thì b = 5 nếu a = 5 thì b = 4 2) Đã biết tích: ab = 36 do đó cần tìm tổng : a + b Cách 1: Đ ặt c = b ta có : a + c = 5 và a.c = 36 2 x1 4 Suy ra a,c là nghiệm của phương trình : x 5x 36 0 x2 9 Do đó nếu a = 4 thì c = 9 nên b = 9 nếu a = 9 thì c = 4 nên b = 4 Cách 2: Từ a b 2 a b 2 4ab a b 2 a b 2 4ab 169 2 2 a b 13 a b 13 a b 13 2 x1 4 *) Với a b 13 và ab = 36, nên a, b là nghiệm của phương trình : x 13x 36 0 x2 9 Vậy a = 4 thì b = 9 2 x1 4 *) Với a b 13 và ab = 36, nên a, b là nghiệm của phương trình : x 13x 36 0 x2 9 Vậy a = 9 thì b = 4 3) Đã biết ab = 30, do đó cần tìm a + b:
- Chuyªn ®Ò øng dông ®Þnh lý vi-Ðt trong gi¶i to¸n - §Æng TiÒn Giang a b 11 2 2 2 2 2 2 T ừ: a + b = 61 a b a b 2ab 61 2.30 121 11 a b 11 2 x1 5 *) Nếu a b 11 và ab = 30 thì a, b là hai nghiệm của phương trình: x 11x 30 0 x2 6 Vậy nếu a = 5 thì b = 6 ; nếu a = 6 thì b = 5 2 x1 5 *) Nếu a b 11 và ab = 30 thì a, b là hai nghiệm của phương trình : x 11x 30 0 x2 6 Vậy nếu a = 5 thì b = 6 ; nếu a = 6 thì b = 5. IV. TÍNH GIÁ TRỊ CỦA CÁC BIỂU THỨC NGHIỆM Đối các bài toán dạng này điều quan trọng nhất là phải biết biến đổi biểu thức nghiệm đã cho về biểu thức có chứa tổng nghiệm S và tích nghiệm P để áp dụng hệ thức VI-ÉT rổi tính giá trị của biểu thức 1. Biến đổi biểu thức để làm xuất hiện : ( x1 x2 ) và x1x2 2 2 2 2 2 Ví dụ 1 a) x1 x2 (x1 2x1x2 x2 ) 2x1x2 (x1 x2 ) 2x1x2 b) x3 x3 x x x2 x x x2 x x x x 2 3x x 1 2 1 2 1 1 2 2 1 2 1 2 1 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 c) x1 x2 (x1 ) (x2 ) x1 x2 2x1 x2 (x1 x2 ) 2x1x2 2x1 x2 1 1 x x d) 1 2 x1 x2 x1x2 Ví dụ 2 x1 x2 ? 2 2 2 Ta biết x1 x2 x1 x2 4x1x2 x1 x2 x1 x2 4x1x2 Từ các biểu thức đã biến đổi trên hãy biến đổi các biểu thức sau: 2 2 1. x1 x2 ( x1 x2 x1 x2 = .) 2. x3 x3 ( = x x x2 x x x2 x x x x 2 x x = . ) 1 2 1 2 1 1 2 2 1 2 1 2 1 2 4 4 2 2 2 2 3. x1 x2 ( = x1 x2 x1 x2 = ) 6 6 2 3 2 3 2 2 4 2 2 4 4. x1 x2 ( = (x1 ) (x2 ) x1 x2 x1 x1 x2 x2 = ) Bài tập áp dụng 6 6 5 5 7 7 1 1 5. x1 x2 6. x1 x2 7. x1 x2 8. x1 1 x2 1 2. Không giải phương trình, tính giá trị của biểu thức nghiệm a) Cho phương trình : x2 8x 15 0 Không giải phương trình, hãy tính 2 2 1 1 8 1. x1 x2 (34) 2. x1 x2 15 x1 x2 34 2 3. 4. x1 x2 (46) x2 x1 15 b) Cho phương trình : 8x2 72x 64 0 Không giải phương trình, hãy tính: 1 1 9 2 2 1. 2. x1 x2 (65) x1 x2 8
- Chuyªn ®Ò øng dông ®Þnh lý vi-Ðt trong gi¶i to¸n - §Æng TiÒn Giang c) Cho phương trình : x2 14x 29 0 Không giải phương trình, hãy tính: 1 1 14 2 2 1. 2. x1 x2 (138) x1 x2 29 d) Cho phương trình : 2x2 3x 1 0 Không giải phương trình, hãy tính: 1 1 1 x 1 x 1. (3) 2. 1 2 (1) x1 x2 x1 x2 2 2 x1 x2 5 3. x1 x2 (1) 4. x2 1 x1 1 6 2 e) Cho phương trình x 4 3x 8 0 có 2 nghiệm x1 ; x2 , không giải phương trình, tính 2 2 6x1 10x1x2 6x2 Q 3 3 5x1x2 5x1 x2 6x2 10x x 6x2 6(x x )2 2x x 6.(4 3)2 2.8 17 HD: Q 1 1 2 2 1 2 1 2 3 3 2 2 5x1x2 5x1 x2 5x x x x 2x x 5.8 (4 3) 2.8 80 1 2 1 2 1 2 V. TÌM HỆ THỨC LIÊN HỆ GIỮA HAI NGHIỆM CỦA PHƯƠNG TRÌNH SAO CHO HAI NGHIỆM NÀY KHÔNG PHỤ THUỘC (HAY ĐỘC LẬP) VỚI THAM SỐ Để làm các bài toán loại này, ta làm lần lượt theo các bước sau: - Đặt điều kiện cho tham số để phương trình đã cho có hai nghiệm x1 và x2 (thường là a 0 và 0) - Áp dụng hệ thức VI-ÉT viết S = x1 + x2 v à P = x1 x2 theo tham số - Dùng quy tắc cộng hoặc thế để tính tham số theo x 1 và x2 . Từ đó đưa ra hệ thức liên hệ giữa các nghiệm x1 và x2. 2 Ví dụ 1: Cho phương trình : m 1 x 2mx m 4 0 có 2 nghiệm x1; x2 . Lập hệ thức liên hệ giữa x1; x2 sao cho chúng không phụ thuộc vào m. Để phương trình trên có 2 nghiệm x1 và x2 th ì : m 1 m 1 0 m 1 m 1 2 4 V' 0 m (m 1)(m 4) 0 5m 4 0 m 5 Theo hệ th ức VI- ÉT ta có : 2m 2 x x x x 2 (1) 1 2 m 1 1 2 m 1 m 4 3 x .x x .x 1 (2) 1 2 m 1 1 2 m 1 Rút m từ (1) ta có : 2 2 x1 x2 2 m 1 (3) m 1 x1 x2 2 Rút m từ (2) ta có :