Sáng kiến kinh nghiệm Sử dụng phương pháp “phân tích đi lên” để tìm lời giải cho bài toán

doc 12 trang sangkien 27/08/2022 9001
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Sử dụng phương pháp “phân tích đi lên” để tìm lời giải cho bài toán", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docsang_kien_kinh_nghiem_su_dung_phuong_phap_phan_tich_di_len_d.doc

Nội dung text: Sáng kiến kinh nghiệm Sử dụng phương pháp “phân tích đi lên” để tìm lời giải cho bài toán

  1. Gv: Nguyễn Quyết Thắng Trường THCS Quỳnh lâm Năm học 2011-2012 Sử dụng phương pháp “phân tích đi lên” để tìm lời giải cho bài toán A- Lý do chọn đề tài: Một trong những yêu cầu đặt ra của đổi mới phương pháp dạy học là tích cực hoá hoạt động học tập của học sinh dưới sự tổ chức, hướng dẫn của giáo viên. Học sinh tự giác, chủ động tìm tòi, phát hiện và giải quyết nhiệm vụ và có ý thức vận dụng linh hoạt, sáng tạo các kiến thức đã học vào học tập và thực tiễn. Trong trường phổ thông, dạy toán là dạy hoạt động toán học. Đối với học sinh có thể xem việc giải toán là hình thức chủ yếu của hoạt động toán học. Quá trình giải toán - đặc biệt là giải toán hình học là quá trình rèn luyện phương pháp tư duy, suy nghĩ, phương pháp tìm tòi và vận dụng kiến thức vào thực tế. Giải toán thực chất là hình thức để củng cố, khắc sâu kiến thức, rèn luyện được những kĩ năng cơ bản trong môn toán. Trong hoạt động dạy học theo phương pháp đổi mới, giáo viên cần giúp học sinh chuyển từ thói quen thụ động sang thói quen chủ động. Muốn vậy GV cần chỉ cho HS cách học, biết cách suy luận, biết tự tìm lại những điều đã quên, biết cách tìm tòi để phát hiện kiến thức mới. Học sinh cần được rèn luyện các thao tác tư duy như phân tích, tổng hợp, đặc biệt hoá, khái quát hoá, tương tự, quy lạ về quen. Việc nắm vững các phương pháp nói trên tạo điều kiện cho học sinh có thể đọc hiểu được tài liệu, tự làm được bài tập, nắm vững và hiểu sâu các kiến thức cơ bản đồng thời phát huy được tiềm năng sáng tạo của bản thân và từ đó học sinh thấy được niềm vui trong học tập. Chỉ trong quá trình giải toán tiềm năng sáng tạo của học sinh mới được bộc lộ và phát huy, các em có được thói quen nhìn nhận một sự kiện dưới những góc độ khác nhau, biết đặt ra nhiều giả thuyết khi phải lý giải một vấn đề, biết đề xuất những giải pháp khác nhau khi xử lý một tình huống. Về khách quan cho thấy hiện nay năng lực học toán của học sinh còn rất nhiều thiếu sót; đặc biệt là quá trình vận dụng các kiến thức đã học vào bài tập và thực tiễn. Tỷ lệ học sinh yếu kém còn cao, các em luôn có cảm giác học hình khó hơn học đại số. Tình trạng phổ biến của học sinh khi làm toán là không chịu nghiên cứu kĩ bài toán, không chịu khai thác và huy động kiến thức để làm toán. Trong quá trình giải thì suy luận thiếu căn cứ, trình bày cẩu thả, tuỳ tiện Về phía giáo viên phần lớn chưa nhận thức đầy đủ về ý nghĩa của việc dạy giải toán. Hầu hết GV chưa cung cấp cho HS phương pháp giải toán mà chủ yếu giải toán cho học sinh, chú ý đến số lượng hơn là chất lượng. Trong quá trình dạy học giải toán GV ít quan tâm đến việc rèn luyện các thao tác tư duy và phương pháp suy luận. Thông thường GV giải đến đâu vấn đáp hoặc giải thích cho học sinh đến đó, không những vậy mà nhiều GV coi việc giải xong một bài toán kết thúc hoạt động. GV chưa thấy được trong quá trình giải toán nó giúp cho học sinh có được phương pháp, kĩ năng, kinh nghiệm, củng cố, khắc sâu kiến thức mà còn bổ sung nguồn kiến thức mới phong phú mà tiết dạy lý thuyết mới khó thực hiện được. 1
  2. Gv: Nguyễn Quyết Thắng Trường THCS Quỳnh lâm Năm học 2011-2012 Một trong các phương pháp giải toán mà tôi thấy HS tiếp thu và vận dụng tốt là “phân tích đi lên” để tìm lời giải. Đó là lí do mà tôi giới thiệu sáng kiến đã được bản thân công phu tìm hiểu. Với mong muốn góp phần nâng cao chất lượng dạy học môn toán theo tinh thần đổi mới. B- Nội dung nghiên cứu của đề tài: I - Phần lý luận 1- Quan niệm vấn đề dạy học giải toán: Dạy học giải toán bao gồm hai nội dung cơ bản: + Tìm tòi lời giải bài toán (đường lối). + Trình bày lời giải (Diễn đạt). Trong quá trình giảng dạy hai nội dung này nhiều lúc tiến hành đồng thời nhưng nhiều khi tách thành hai quá trình. Do vậy trong thực hành cần phân biệt hai nội dung trên và độc lập với nhau vì: - Giải một bài toán khi có một đường lối là kết quả của một quá trình bao gồm nhiều khâu và là cái đích cuối cùng của người làm toán song dù sao quá trình này vẫn là thứ yếu bởi lẽ dù có kĩ thuật tốt có thành thạo trong các thao tác nhưng chưa có đường lối thì chưa có lời giải bài toán. Mặt khác trong khâu thực hiện các thao tác khi đã có phương hướng là giai đoạn lao động có tính chất kĩ thuật không chứa đựng những yếu tố sáng tạo như trong giai đoạn tìm tòi lời giải.Chỉ trong quá trình tìm tòi lời giải học sinh mới có cơ hội củng cố, khắc sâu kiến thức, rèn luyện các thao tác tư duy, phương pháp suy luận, khả năng phán đoán và lập luận chứng minh, khả năng phát hiện kiến thức mới, vấn đề mới - Mặt khác khi đã có đường lối thì việc trình bày, diễn đạt mới dễ dàng, lôgic, trật tự, khoa học. Rèn luyện được cho học sinh thói quen sử dụng kí hiệu, thuật ngữ chính xác và từ đó phát triển được tư duy lôgic và ngôn ngữ chính xác. Giúp học sinh tự tin hơn, chủ động hơn. 2- Rèn luyện phẩm chất trí tuệ thông qua giải toán. * Tính linh hoạt biểu hiện ở các mặt sau: + Kĩ năng thay đổi phương hướng giải quyết vấn đề phù hợp với sự thay đổi của các điều kiện, biết tìm ra phương pháp mới để giải quyết vấn đề. + Kĩ năng xác lập sự phụ thuộc giữa các kiến thức theo trật tự ngược lại với cách đã học. 2
  3. Gv: Nguyễn Quyết Thắng Trường THCS Quỳnh lâm Năm học 2011-2012 + Kĩ năng nhìn một vấn đề theo nhiều quan điểm khác nhau. * Tính độc lập biểu hiện: + Kĩ năng tự mình thấy được vấn đề cần giải quyết, tự mình giải đáp vấn đề đó không đi tìm lời giải có sẵn, không dựa vào ý nghĩ của người khác. + Có khả năng đánh giá ý nghĩ của người khác và tự đánh giá ý nghĩ của bản thân. * Tính sáng tạo biểu hiện: + Tự mình biết tìm ra phương pháp ngắn gọn, hay nhất, phát hiện kiến thức mới từ vấn đề. + Tự mình phát hiện vấn đề và đặt ra vấn đề (Biết khai thác và phát triển bài toán, biết vận dụng bài toán vào các vấn đề khác, biết tự mở rrộng kiến thức, ). 3- Các biện pháp để rèn luyện cho học sinh các phẩm chất trên: + Thường xuyên tập dượt cho học sinh khả năng dự đoán và suy luận có lý, dự đoán thông qua quan sát, so sánh, khái quát, quy nạp, để học sinh tự mình phát hiện vấn đề. + Ngoài việc sử dụng thành thạo quy tắc, phương pháp nào đó cần đưa ra các bài tập có cách giải quyết riêng. + Khuyến khích học sinh tìm nhiều lời giải khác nhau của một bài toán. Việc tìm nhiều lời giải khác nhau của một bài toán gắn liền với việc nhìn vấn đề với nhiều khía cạnh khác nhau mở đường cho sự sáng tạo phong phú. + Rèn luyện cho học sinh khả năng nhanh chóng chuyển từ tư duy thuận sang tư duy nghịch + Đưa ra nhiều bài toán không theo mẫu. Sau đay tôi xin đưa ra một số bài toán minh hoạ các công việc cần làm của giáo viên khi hướng dẫn học sinh giải toán hình học 9. II - Phần vận dụng Bài 1: Cho hai đường tròn bằng nhau (O) và (O’) cắt nhau tại A và B. Đường thẳng vuông góc với AB kẻ qua B cắt (O) và (O’) lần lượt tại các điểm C và D. Lấy điểm M trên cung nhỏ CB. Đường thẳng MB cắt (O’) tại N, CM cắt DN tại P. a) ?AMN là tam giác gì? tại sao? b) Chứng minh tứ giác ACPD nội tiếp. c) Gọi Q là giao điểm của AP với (O’). Tứ giác BCPQ là hình gì? tại sao? 3
  4. Gv: Nguyễn Quyết Thắng Trường THCS Quỳnh lâm Năm học 2011-2012 A A O' O N C D M B P Hướng dẫn tìm tòi lời giải: a)- HS dự đoán thông qua quan sát: (∆AMN cân tại A) Chứng minh: ∆AMN cân tại A (?1)  AMˆ B ANˆ B (?2)  1 1 AMˆ B sdAmB và ANˆ B sdAnB và AmB = AnB 2 2    (Góc nội tiếp) ( Góc nội tiếp) ( (O) bằng (O’)) (?1) Chứng minh ?AMN cân bằng cách nào? (?2) Chứng minh như thế nào để có AMˆ B ANˆ B ? Từ sơ đồ học sinh trình bày lời giải: 1 AMˆ B sdAmB ( Góc nội tiếp ) (1) 2 1 ANˆ B sdAnB ( Góc nội tiếp ) (2) 2 (O) bằng (O’) nên ta có: AmB = AnB (3) Từ (1), (2) và (3) AMˆ B ANˆ B ?AMN cân tại A. b) Chứng minh tứ giác ACPD nội tiếp  (?3) ACˆP ADˆP 1800  4
  5. Gv: Nguyễn Quyết Thắng Trường THCS Quỳnh lâm Năm học 2011-2012 (?4) ACˆP ADˆ P ADˆ N ADˆ P 180 0 (kề bù)  (?5) ACˆP ADˆ N ( Góc nội tiếp chắn hai cung bằng nhau)  (?6) AM AN  (?7) AM = AN  ?AMN cân tại A (?3): Để chứng minh tứ giác ACPD nội tiếp cần chứng minh điều gì ? (?4) Góc ADP cộng với góc nào bằng 1800 ? ta cần chứng minh điều gì ? (?5) Muốn chứng minh ACˆP ADˆ N cần chứng minh được điều gì ? (?6) Muốn chứng minh AM AN cần chứng minh được điều gì ? (?7) Chứng minh AM = AN bằng cách nào ? Học sinh trình bày lời giải: ?AMN cân tại A AM = AN AM AN ACˆP ADˆ N ( Góc nội tiếp chắn hai cung bằng nhau) ACˆP ADˆ P ADˆ N ADˆ P 180 0 (kề bù) ACˆP ADˆ P 180 0 tứ giác ACPD nội tiếp. c) HS dự đoán ( BCPQ là hình thang ) Để chứng minh BCPQ là hình thang  (?8) BQ // CP  (?9) AQˆ B APˆC ( ở vị trí đồng vị )  (?10) AQˆ B ADˆ C và APˆC ADˆ C   1 1 (? 11)( = sđAmB ) (= sđ AC ) (?12) 2 2  (Tứ giác ACPD nội tiếp ) 5
  6. Gv: Nguyễn Quyết Thắng Trường THCS Quỳnh lâm Năm học 2011-2012 (?8) Để chứng minh tứ giác BCPQ là hình thang cần chứng minh được điều gì ? (?9) Muốn chứng minh BQ // CP cần chứng minh được điều gì ? (?10) Sử dụng phương pháp nào để chứng minh AQˆ B APˆC ? (?11) Sử dụng phương pháp nào để chứng minh AQˆ B ADˆ C ? (?12) Sử dụng phương pháp nào để chứng minh APˆC ADˆ C ? Học sinh trình bày: 1 Tứ giác ACPD nội tiếp APˆC ADˆ C (= sđ AC ) (4) 2 1 Mặt khác lại có: AQˆ B ADˆ C ( = sđAmB ) (5) 2 Từ (4) và (5) AQˆ B APˆC ( ở vị trí đồng vị ) BQ // CP Tứ giác BCPQ là hình thang. Sau khi giải xong Gv cho HS nhắc lại yêu cầu từng phần cách chứng minh mục đích: * Củng cố kiến thức: + Trong hai đường tròn bằng nhau hai dây bằng nhau thì hai cung bằng nhau. + Góc nội tiếp chắn hai cung bằng nhau thì bằng nhau. * Củng cố phương pháp: + PP chứng minh tam giác cân. + PP chứng minh tứ giác nội tiếp bằng cách sử dụng hai góc kề bù để chỉ ra tổng hai góc đối bằng 1800. + PP chứng minh hai góc bằng nhau theo quan hệ bắc cầu. + PP chứng minh hai đường thẳng song song bằng cách chỉ ra hai góc ở vị trí đồng vị bằng nhau. Sau khi củng cố GV khuyến khích học sinh tìm tòi cách giải khác. b) Cách 2:Dễ thấy tứ giác AMPN nội tiếp vì có hai góc vuông. như vậy nếu tứ giác ACPD nội tiếp thì CAˆ D MAˆ N . Giáo viên củng cố PP chứng minh một tứ giác nội tiếp bằng cách sử dụng tứ giác bên cạnh nội tiếp để chỉ ra tổng hai góc đối bằng 1800. Cách 3: Nếu tứ giác ACPQ nội tiếp thì APˆM ADˆ C ANˆ B GV củng cố PP chứng minh tứ giác ACPD Bằng cách chứng minh APˆC ADˆ C GV: -Em có thể thay đổi yêu cầu phần a, b, c để có một yêu cầu tương tự mà quá trình chứng minh không thay đổi. 6