Sáng kiến kinh nghiệm “Số nguyên tố” trong trường Trung học cơ sở

doc 25 trang sangkien 31/08/2022 2840
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm “Số nguyên tố” trong trường Trung học cơ sở", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docsang_kien_kinh_nghiem_so_nguyen_to_trong_truong_trung_hoc_co.doc

Nội dung text: Sáng kiến kinh nghiệm “Số nguyên tố” trong trường Trung học cơ sở

  1. Lời nói đầu Toán học là một trong những môn học có vị trí quan trọng trong nhà trường. Dạy toán là dạy phương pháp suy luận khoa học. Học toán là rèn luyện khả năng tư duy lôgic, còn giải toán là một phương tiện rất tốt trong việc nắm vững tri thức, phát triển tư duy, hình thành kỹ năng, kỹ xảo. Toán học là một công cụ vĩ đại làm giảm nhẹ công việc trong các lĩnh vực khác nhau. Toán học không phải là sự thông minh sách vở khô khan, nhằm chọc tức những người ít quan tâm cũng không phải là những tính toán ngốc nghếch chỉ đem lại kết quả là thuộc lòng một tóm tắt, công thức. Trong thư của Thủ tướng Phạm Văn Đồng gửi các bạn trẻ yêu Toán viết: “ Trong các môn khoa học kỹ thuật, toán học giữ một vị trí đặc biệt, nó có tác dụng lớn đối với sản xuất và chiến đấu”. Trong Toán học, Phân môn Số học là phân môn môn có từ lâu đời nhất và có nhiều sự hấp dẫn. Các bài toán số học đã cuốn hút và làm say mê lòng người: Từ các nhà toán học lỗi lạc của mọi thời đại đến đông đảo các bạn trẻ yêu toán. Thế giới các con số quen thuộc đối với chúng ta trong cuộc sống hàng ngày, nhưng nó cũng là một thế giới hết sức kỳ lạ và đầy bí ẩn. Loài người đã phát hiện trong đó biết bao tính chất, bao quy luật đồng thỡi cũng đau đầu chưa thể chứng minh được một số những dự kiến, dự đoán toán học. Một điều lý thú là có nhiều mệnh đề khó của số học lại được phát biểu rất đơn giản, rất dễ hiểu. Nhiều bài toán số học khó nhưng lại có thể giải quyết sáng tạo với những kiến thức số học rất phổ thông. Trong số học, chúng ta còn có những vấn đề mới đầy bí ẩn đang chờ đón. Chính vì lẽ đó mà các bài toán số học luôn có mặt trong các đề thi chọn học sinh giỏi toán ở tất cả các cấp học và đối với hầu hết các nước trên thế giới. Là một bộ phận của Số học, Số nguyên tố cũng tựu chung đầy đủ các yếu tố trên, làm quen đối với số nguyên tố và yêu thích số nguyên tố, chúng ta càng thấy rõ chân lý: “Toán học là môn thể dục của trí tuệ” . Nó giúp rèn luyện được 1
  2. tính kiên trì vượt khó, tư duy lôgic và tính sáng tạo. Về số nguyên tố trong chương trình học ,giáo viên mới dừng ở mức độ giúp học sinh có được hiểu biết sơ đẳng nhất về số nguyên tố như: định nghĩa số nguyên tố, những tính chất cơ bản của số nguyên tố và các bài tập áp dụng lý thuyết đơn thuần. Vì vậy khi gặp những bài toán về số nguyên tố ở dạng tổng quát và phức tạp, học sinh thường hay lúng túng và bế tắc. Là giáo viên, tôi thấy việc giúp đỡ các em học sinh, nhất là các em học sinh khá giỏi tìm hiểu sâu sắc hơn về số nguyên tố là một việc làm rất cần thiết. Với những lý do đó, cùng với sự trăn trở, say mê nghiên cứu, tìm tòi học hỏi, tôi mạnh dạn trình bày một số quan điểm khi giảng dạy chuyên đề “Số nguyên tố” trong trường trung học cơ sở với đối tượng là học sinh khá và giỏi. Trong phạm vi chuyên đề này, tôi trình bày những nội dung sau: Phần thứ nhất: Một số kiến thức cơ bản về số nguyên tố. Phần này tôi nhằm hệ thống lại các kiến thức cơ bản về số nguyên tố mà chúng ta sẽ sử dụng giải bài tập. Phần thứ hai: Một số bài toán cơ bản về số nguyên tố lớp 6. Các bài tập trong phần này được đưa vào theo các dạng và có trình bày lời giải. Phần I Tóm tắt Một số kiến thức cơ bản Về số nguyên tố I/ Định nghĩa 1) Số nguyên tố là những số tự nhiên lớn hơn 1, chỉ có 2 ước số là 1 và chính nó. Ví dụ: 2, 3, 5, 7 11, 13,17, 19 2
  3. 2) Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước Ví dụ: 4 có 3 ước số: 1 ; 2 và 4 nên 4 là hợp số. 3) Các số 0 và 1 không phải là só nguyên tố cũng không phải là hợp số 4) Bất kỳ số tự nhiên lớn hơn 1 nào cũng có ít nhất một ước số nguyên tố II/ Một số định lý cơ bản 1) Định lý 1: Dãy số nguyên tố là dãy số vô hạn Chứng minh: Giả sử chỉ có hữu hạn số nguyên tố là p1; p2; p3; pn. trong đó pn là số lớn nhất trong các nguyên tố. Xét số N = p1 p2 pn +1 thì N chia cho mỗi số nguyên tố pi (1  i  n) đều dư 1 (1) Mặt khác N là một hợp số (vì nó lớn hơn số nguyên tố lớn nhất là pn) do đó N phải có một ước nguyên tố nào đó, tức là N chia hết cho một trong các số pi (1  i  n). (2) Ta thấy (2) mâu thuẫn (1). Vậy không thể có hữu hạn số nguyên tố. 2/ Định lý 2: Mọi số tự nhiên lớn hơn 1 đều phân tích được ra thừa số nguyên tố một cách duy nhất (không kể thứ tự các thừa số). Chứng minh: * Mọi số tự nhiên lớn hơn 1 đều phân tích được ra thừa số nguyên tố: Thật vậy: giả sử điều khẳng định trên là đúng với mọi số m thoả mãn: 1< m < n ta chứng minh điều đó đúng với mọi n. Nếu n là nguyên tố, ta có điều phải chứng minh. Nếu n là hợp số, theo định nghĩa hợp số, ta có: n = a.b (với a, b < n) Theo giả thiết quy nạp: a và b là tích các thừa số nhỏ hơn n nên n là tích cả các thừa số nguyên tố. 3
  4. * Sự phân tích là duy nhất: Giả sử mọi số m p2 và n > p’2 Do p = p’ => n > p.p’ Xét m = n - pp’ p \ n – pp’ hay p \ m p’ \ n => p’ \ n – pp’ hay p’ \ m Khi phân tích ra thừa số nguyên tố ta có: m = n - pp’ = pp’ . P.Q với P, Q  P ( P là tập các số nguyên tố)  pp’ \ n = pp’ \ p.q.r => p’ \ q.r => p’ là ước nguyên tố của q.r Mà p’ không trùng với một thừa số nào trong q,r (điều này trái với gỉa thiết quy nạp là một số nhỏ hơn n đều phân tích được ra thừa số nguyên tố một cách duy nhất). 4
  5. Vậy, điều giả sử không đúng, n không thể là hợp số mà n phải là số nguyên tố (Định lý được chứng minh). III/ Cách nhận biết một số nguyên tố Cách 1 Chia số đó lần lượt cho các nguyên tố từ nhỏ đến lớn: 2; 3; 5; 7 Nếu có một phép chia hết thì số đó không nguyên tố. Nếu thực hiện phép chia cho đến lúc thương số nhỏ hơn số chia mà các phép chia vẫn có số dư thì số đó là nguyên tố. Cách 2: Một số có hai ước số lớn hơn 1 thì số đó không phải là số nguyên tố Cho học sinh lớp 6 học cách nhận biết 1 số nguyên tố bằng phương pháp thứ nhất (nêu ở trên), là dựa vào định lý cơ bản: Ước số nguyên tố nhỏ nhất của một hợp số A là một số khôngvượt quá A. Đặc biệt: Với dãy 25 số nguyên tố nhỏ hơn 100 nên cho học sinh học thuộc, tuy nhiên khi găp 1 số a nào đó (a 1 không có một ước số nguyên tố nào từ 2 đến A thì A là một nguyên tố. (Do học sinh lớp 6 chưa học khái niệm căn bậc hai nên ta không đặt vấn đề chứng minh định lý này, chỉ giới thiệu để học sinh tham khảo.). 5
  6. IV/ Số các ước số và tổng các ước số của 1 số: X1 X2 Xn Giả sử: A = p1 . p2 pn Trong đó: pi  P ; xi N ; i = I, n a) Số các ước số của A tính bằng công thức: T(A) = (x1 + 1)(x2 + 1) (xn + 1) Ví dụ: 30 = 2.3.5 thì T(A) = (1 + 1)(1 + 1)(1 + 1) = 8 Thật vậy: Ư(30) = 1;2;3;5;6;10;15;30 Ư(30) có 8 phân tử ứng dụng: Có thể không cần tìm Ư(A) vẫn biết A có bao nhiêu ước thông qua việc phân tích ra thừa số nguyên tố. 3100 có (100 + 1) = 101 ước 1000 000 000 = 109 = 29.59 có (9 + 1)(9+1) = 100 ước ý nghĩa: Khi thông báo cho học sinh cách tính số ước của một số các em có thể tin tưởng khi viết một tập hợp ước của một số và khẳng định đã đủ hay chưa. b) Tổng các ước một số của A tính bằng công thức: X1 + 1 X2 + 1 Xn + 1 p1 - 1 p2 - 1 pn - 1 (A) = p1 - 1 p2 - 1 pn - 1 V/ Hai số nguyên tố cùng nhau: 1- Hai số tự nhiên được gọi là nguyên tố cùng nhau khi và chỉ khi chúng có ước chung lớn nhất (ƯCLN) bằng 1. a, b nguyên tố cùng nhau (a,b) = 1 a,b  N 2- Hai số tự nhiên liên tiếp luôn nguyên tố cùng nhau 3- Hai số nguyên tố khác nhau luôn nguyên tố cùng nhau 4- Các số a,b,c nguyên tố cùng nhau (a,b,c) = 1 5- a,b,c nguyên tố sánh đôi khi chúng đôi một nguyên tố cùng nhau 6
  7. a,b,c nguyên tố sánh đôi (a,b) = (b,c) = (c,a) = 1 VI/ Một số định lý đặc biệt 1) Định lý Đirichlet Tồn tại vô số số nguyên tố p có dạng: p = ax + b (x N, a,b là 2 số nguyên tố cùng nhau). Việc chứng minh định lý này khá phức tạp, trừ một số trường hợp đặc biệt. Ví dụ: Chứng minh rằng có vô số số nguyên tố dạng 2x – 1; 3x – 1; 4x + 3; 6x + 5 2) Định lý Tchebycheff Trong khoảng từ số tự nhiên n đến số tự nhiên 2n có ít nhất một số nguyên tố (n  2). 3) Định lý Vinogradow Mọi số lẻ lớn hơn 33 là tổng của 3 số nguyên tố. Các định lý 2 và định lý 3 ta có thể giới thiệu cho học sinh tham khảo và sử dụng để giải một số bài tập. 7
  8. Phần II Một số bài toán cơ bản Về số nguyên tố lớp 6 Dạng 1: Có bao nhiêu số nguyên tố dạng ax + b (với x N và (a,b) = 1) Bài tập số 1: Chứng minh rằng: có vô số số nguyên tố có dạng: 3x – 1 (x1) Giải: Giáo viên gợi ý và hướng dẫn học sinh để học sinh tự rút ra nhận xét: Mọi số tự nhiên không nhỏ hơn 2 có 1 trong 3 dạng: 3x; 3x + 1; hoặc 3x - 1 +) Những số có dạng 3x (với x>1) là hợp số +) Xét 2 số có dạng 3x + 1: đó là số (3m + 1) và số (3n + 1) Xét tích (3m + 1)(3n + 1) = 9mn + 3m + 3n + 1 = 3x + 1 Tích trên có dạng: 3x + 1 +) Lấy một số nguyên tố p có dạng 3x – 1 (với p bất kỳ  p) ta lập tích của p với tất cả các số nguyên tố nhỏ hơn p rồi trừ đi ta có: M = 2.3.5.7 p – 1 = 3(2.5.7 p) – 1 M có dạng: 3x – 1 Có 2 khả năng xảy ra: * Khả năng 1: M là số nguyên tố, đó là số nguyên tố có dạng (3x – 1) > p, bài toán được chứng minh. * Khả năng 2: M là hợp số: Ta chia M cho 2, 3, 5, ,p đều tồn tại một số dư khác 0 nên các ước nguyên tố của M đều lớn hơn p, trong các ước này không có số nào có dạng 3x + 1 (đã chứng minh trên). Do đó ít nhất một trong các ước nguyên tố của M phải có dạng 3x (hợp số) hoặc 3x + 1 8