Sáng kiến kinh nghiệm Ứng đường tròn lượng giác để giải các bài tập dao động điều hoà

doc 21 trang sangkien 9140
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Ứng đường tròn lượng giác để giải các bài tập dao động điều hoà", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docsang_kien_kinh_nghiem_ung_duong_tron_luong_giac_de_giai_cac.doc

Nội dung text: Sáng kiến kinh nghiệm Ứng đường tròn lượng giác để giải các bài tập dao động điều hoà

  1. MỤC LỤC Trang A. ĐẶT VẤN ĐỀ 2 1. lý do chọn đề tài 2 2. Mục đích nghiên cứu 3 3. Đối tượng nghiên cứu 3 4. Phương pháp nghiên cứu 3 B. GIẢI QUYẾT VẤN ĐỀ 4 Phần 1: Cơ sở lí luận 4 Phần 2: Thực trạng đề tài 5 Phần 3: Giải pháp thực hiện 5 3.1. Viết phương trình dao động 5 3.2. Xác định khoảng thời gian ngắn nhất để vật đi từ vị trí 7 có li độ x1 đến vị trí có li độ x2. 3.3. Xác định quãng đường đi được trong khoảng thời gian 9 t t2 t1 3.4. Tìm số lần dao động trong khoảng thời gian t t2 t1 11 3.5. Xác định thời điểm vật đi qua một vị trí xác định 13 3.6. Các bài tập Dao động điện – Dao động điện từ 16 Phần 4: Kiểm nghiệm 19 C. KẾT LUẬN VÀ ĐỀ XUẤT 20 TÀI LIỆU THAM KHẢO 21 1
  2. A. ĐẶT VẤN ĐỀ 1. LÝ DO CHỌN ĐỀ TÀI. Dạy học là một công việc đòi hỏi người giáo viên phải sáng tạo, phải luôn trau dồi và tiếp thu những kiến thức mới, những phương pháp mới cho phù hợp với yêu cầu đào tạo nguồn nhân lực mới của xã hội. Với kinh nghiệm giảng dạy của mình tôi nhận thấy: Việc quan trọng nhất trong quá trình dạu học là làm thế nào để học sinh cảm thấy hứng thú, say mê trong học tập. Để làm được việc đó ngoài việc giáo viên phải chuẩn bị tốt kiến thức, giáo án, phương tiện, thiết bị dạy học Cần phải thay đổi cách dạy, cách đặt vấn đề, cách đặt câu hỏi. Đặc biệt là tìm ra phương pháp mới, cách giải mới, giúp học sinh dễ tiếp thu kiến thức hơn, giảm bớt áp lực trong học tập. Bài tập vật lý với tư cách là một phương pháp dạy học, là cầu nối để học sinh đi từ tư duy trừu tượng đển trực quan sinh động và ngược lại từ đó có được thế giới quan khoa học duy vật biện chứng; đồng thời nó là phương tiện để nghiên cứu tài liệu mới, để ôn tập, rèn luyện kĩ năng, kĩ xảo, bồi dưỡng phương pháp nghiên cứu khoa học. Chính vì vậy việc giải tốt các bài tập vật lý sẽ góp phần to lớn trong việc phát triển tư duy của học sinh. Đặc biệt bài tập vật lý giúp học sinh củng cố kiến thức có hệ thống cũng như vận dụng những kiến thức đã học vào việc giải quyết những tình huống cụ thể, làm cho bộ môn trở nên lôi cuốn, hấp dẫn các em hơn. Hiện nay, trắc nghiệm khách quan đang trở thành phương pháp chủ đạo trong kiểm tra, trong các kì thi quốc gia đánh giá chất lượng dạy và học trong nhà trường THPT. Với hình thức thi trắc nghiệm khách quan thì nội dung kiến thức kiểm tra tương đối rộng, đòi hỏi học sinh phải học kĩ, nắm vững toàn bộ kiến thức của chương trình. Để đạt được kết quả tốt trong việc kiểm tra, thi tuyển học sinh ngoài việc phải nắm vững kiến thức thì học sinh còn phải có phản ứng nhanh nhạy, xử lí tốt đối với các dạng bài tập. Tôi không phủ nhận những ưu điểm khi dùng phương pháp đại số,dùng các phương trình lượng giác để giải các bài tập vật lí. Song một số dạng toán nếu sử dụng “ Liên hệ giữa chuyển động tròn đều với dao động điều hoà” cho ta kết quả nhanh hơn, cách giải đơn giản hơn. Chính vì vậy trong đề tài này tôi mạnh dạn trình bày trước các đồng nghiệp một vài kinh nghiệm về việc: “ Ứng đường tròn lượng giác để giải các bài tập dao động điều hoà ” 2. MỤC ĐÍCH NGHIÊN CỨU. Tạo ra sự hứng thú trong học tập đồng thời giúp các em đạt được kết quả cao trong các kỳ thi. Rèn luyện phương pháp giải bài tập trắc nghiệm cho học sinh. Giúp học sinh củng cố kiến thức, giảm bớt áp lực bộ môn cho học sinh. Rèn luyện khả năng nghiên cứu khoa học. 2
  3. 3. ĐỐI TƯỢNG NGHIÊN CỨU. Các tiết bài tập, tiết dạy bồi dưỡng, phụ đạo của Chương : + Dao động cơ. + Dao động điện từ. + Dao động điện. Môn vật lí lớp 12 . Đối tượng sử dụng đề tài: Học sinh học lớp 12 ôn thi tốt nghiệp và ôn thi đại học, cao đẳng. 4. NHIỆM VỤ NGHIÊN CỨU. Xác định đối tượng học sinh áp dụng đề tài. Đưa ra phương pháp giải các dạng bài tập liên quan đến ứng dụng đường tròn lượng giác trong phần dao động cơ, dao động điện, dao động điện từ, từ đó giúp học sinh nhận dạng và áp dụng được trong từng bài tập cụ thể và đạt kết quả tốt. Đưa ra một số công thức, nhận xét mà khi học chính khoá do giới hạn của chương trình nên học sinh chưa được tiếp thu nhưng được suy ra khi giải bài tập. Đánh giá, điều chỉnh, bổ sung cho phù hợp. 5. PHƯƠNG PHÁP NGHIÊN CỨU. Nghiên cứu lý thuyết. Giải các bài tập vận dụng. Thống kê. Tổng kết kinh nghiệm. Kiểm tra sự tiếp thu của học sinh bằng các bài tập về nhà và các đề ôn tập. 3
  4. B. GIẢI QUYẾT VẤN ĐỀ Phần1. CƠ SỞ LÝ LÍ LUẬN 1.1. Liên hệ giữa chuyển động tròn đều và dao động điều hòa: Khi nghiên cứu về phương trình của dao x động điều hòa, chúng ta đã biết một vật đang chuyển động tròn đều trên quĩ đạo thì có hình chiếu M  xuống một đường kính của quĩ đạo là dao động P điều hòa. Do đó một dao động điều hòa có dạng x = Acos( (t ) có thể được biểu diễn tương đương M0 với một chuyển động tròn đều có: t - Tâm của đường tròn là VTCB 0. - Bán kính của đường tròn bằng với biên độ dao O x’ động: R = A. - Vị trí ban đầu của vật trên đường tròn hợp với chiều dương trục ox một góc . - Tốc độ quay của vật trên đường tròn bằng . - Bên cạnh cách biểu diễn trên, ta cần chú ý thêm: + Thời gian để chất điểm quay hết một vòng (3600) là một chu kỳ T. + Chiều quay của vật ngược chiều kim đồng hồ. + Góc mà bán kính nối vật chuyển động quét được trong quá trình vật chuyển động tròn đều: = . t thời gian để vật dao động điều hòa đi được góc là: t = / = .T/2 1.2 Đối với dao động điều hòa ta có các nhận xét sau: - Chiều dài quỹ đạo: 2A - Một chu kì vật đi được quãng đường: 4A. - Một nửa chu kì (T/2) thì vật đi được quãng đường: 2A - Trong T/4 vật đi được từ VTCB ra các vị trí biên hoặc ngược lại từ các vị trí biên về VTCB O thì quãng đường: A - Một chu kỳ T vật qua vị trí bất kỳ 2 lần (riêng với điển biên thì 1 lần). - Một chu kỳ vật đạt vận tốc v hai lần ở 2 vị trí đối xứng nhau qua vị trí cân bằng và đạt tốc độ v 4 lần mỗi vị trí 2 lần đi theo chiều dương, 2 lần đi theo chiều âm. - Đối với gia tốc thì kết quả như với li độ. - Chú ý: Nếu t = 0 tính từ vị trí khảo sát thì cả quá trình được cộng thêm một lần vật đi qua li độ, vận tốc đó. - Một chu kỳ có 4 lần vật qua vị trí W t = n. Wđ. Có 4 lần năng lượng điện trường bằng n lần năng lượng từ trường ( dao động điện từ). - Khoảng thời gian giữa 2 lần liên tiếp Wt = Wđ (Năng lượng điện trường bằng năng lượng từ trường): t T/4 (s). - Đối với dòng điện xoay chiều: E0 E. 2 ; U 0 U. 2 ; I0 I. 2 . 4
  5. Phần2. THỰC TRẠNG CỦA ĐỀ TÀI 2.1. Đối với học sinh các trường miền núi nói chung và trường THPT Bá Thước nói riêng thì đa số học sinh học môn toán chưa tốt nên việc vận dụng kiến thức toán học ( phần lượng giác) vào giải các bài tập vật lí trong chuyên đề “ Giải các bài toán dao động” các em thường : - Hoặc mắc phải sai sót do thực hiện nhiều bước biến đổi toán học. - Hoặc tốn nhiều thời gian do thực hiện nhiều phép tính. 2.2. Thời lượng dành cho các tiết bài tập ít đặc biệt là dành cho dạng toán này càng ít hơn trong khi đó đạng bài tập này thường xuyên xuất hiện trong các đề thi quốc gia. Phần 3. CÁC GIẢI PHÁP THỰC HIỆN 3.1. VIẾT PHƯƠNG TRÌNH DAO ĐỘNG ĐIỀU HOÀ 3.1.1. Phương pháp: Bước 1: Xác định các đại lượng  , A ( đủ dự kiện). Bước 2: Xác định vị trí ban đầu của vật trên chục trục ox ( trục ), biểu diễn vectơ vận tốc của vật. Bước 3: Xác định pha ban đầu dựa vào hệ thức lượng trong tam giác vuông. Bước 4: Viết phương trình dao động. 3.1.2. Các ví dụ Ví dụ 1. Một vật dao động điều hoà dọc theo trục ox quanh vị trí cân bằng 0. Có chu kì T = /5 (s). Đưa vật ra khỏi vị trí cân bằng một đoạn x = + 3 cm rồi chuyền cho vật vận tốc v = + 10 cm/s. Chọn gốc thời gian là lúc vật bắt đầu chuyển động, gốc tọa độ của trục tọa độ là vị trí cân bằng. Viết phương trình dao động của vật. Bài giải - Tần số góc: 2  10 rad/s T - Biên độ dao động: v 2 A = x 2 A = 2  2 (cm) - Ban đầu t = 0 ta có cos = / 2 → = / 3 rad. Có hai vị trí trên đường tròn là M1 và M2 mà ở đó đều có vị trí x = cm. Vì vật dao động đi theo chiều dương, nên ta chọn vị trí M1 tức = - /6 - Vậy phương trình dao động của vật là: x = 2cos(10t - π/6) (cm). * Chú ý: Nếu cho v = -10 cm/s thì ta chọn vị trí ban đầu là M2 tức là / 6 - Phương trình dao động của vật là: x = 2cos(10t + π/6) (cm). 5
  6. Ví dụ 2. Một vật dao động điều hòa với tần số 60Hz, A=5cm. Chọn gốc thời gian lúc vật có li độ x=+2,5cm và đang giảm. Phương trình dao động của vật trong trường hợp này là: A. x 5cos(120 t ) cm B. x 5cos(120 t ) cm 6 3 C. x 5cos(120t ) cm D. x 5cos(120 t ) 6 3 Bài giải - Ta có  2 f 120 ( rad/s) - Tại ban đầu t= 0 ta có cos 2,5 0,5 rad . 5 3 - Vì x đang giảm tức là vật đang đi từ M1 đến - A nên ta chọn = rad. 3 - Vậy phương trình dao động của vật là: x = 5cos( 120 t ) (cm). 3 * Chú ý: Nếu x đang tăng tức vật đang đi từ M2 về vị trí biên dương A. chọn = - rad. 3 - Phương trình dao động của vật là: x = 5cos( 120 t ) (cm). 3 3.1.3. Các bài tập áp dụng Bài 1. Khi treo quả cầu m vào 1 lò xo thì nó giãn ra 25 cm. Từ vị trí cân bằng kéo quả cầu xuống theo phương thẳng đứng 20 cm rồi buông nhẹ. Chọn t 0 = 0 là lúc vật qua vị trí cân bằng theo chiều dương hướng xuống, lấy g = 10 m/s 2 .Phương trình dao động của vật có dạng: A. x = 20cos(2 t - /2 ) cm B. x = 45cos2 t cm C. x= 20cos(2 t) cm D. X = 20cos(100 t) cm Bài 2. Một con lắc lò xo gồm lò xo có khối lượng không đáng kể, có độ cứng k = 100N/m .khối lượng của vật m = 1 kg . Kéo vật khỏi vị trí cân bằng x = +3cm , và truyền cho vật vận tốc v = 30cm/s, ngược chiều dương, chọn t = 0 là lúc vật bắt đầu chuyển động. Phương trình dao động của vật là: A. x = 32 cos(10t + ) cm. B. x = 32 cos(10t - ) cm. 3 4 3 C. x = 32 cos(10t + ) cm. D. x = 32 cos(10t + ) cm 4 4 Bài 3. Một con lắc lò xo gồm quả nặng khối lượng 1kg và một lò xo có độ cứng 1600N/m. Khi quả nặng ở vị trí cân bằng, người ta truyền cho nó vận tốc ban đầu bằng 2 m/s theo chiều dương của trục tọa độ. Phương trình dao động của quả nặng là: 6
  7. A. x 5cos 40t m B. x 0,5cos 40t m 2 2 C. x 5cos 40t cm D. x 0,5cos 40t cm 2 Bài 4. Một con lắc lò xo treo thẳng đứng gồm vật m = 100g, lò xo có độ cứng k = 100N/m. Kéo vật ra khỏi vị trí cân bằng x = + 2cm và truyền vận tốc v = + 62, 8 3cm/s theo phương lò xo. Chọn t = 0 lúc vật bắt đầu chuyển động thì phương trình dao động của con lắc là (cho 2 = 10; g = 10m/s2) A. x = 4cos (10 t + ) cm B. x = 4cos(10 t + ) cm 3 6 C. x = 4cos (10 t + 5 ) cm D. x = 4cos (10 t - ) cm 6 3 Bài 5. Một vật dao động điều hoà, khoảng thời gian giữa hai lần liên tiếp vật qua vị trí cân bằng là 0,5s; quãng đường vật đi được trong 2s là 32cm. Gốc thời gian được chọn lúc vật qua li độ x 2 3cm theo chiều dương. Phương trình dao động của vật là: A. x 4cos(2 t )cm B. x 8cos( t )cm 6 3 C. x 4cos(2 t )cm D. x 8cos( t )cm 3 6 Câu 1 2 3 4 5 Đáp số A D C D A 3.2 XÁC ĐỊNH KHOẢNG THỜI GIAN NGẮN NHẤT ĐỂ VẬT ĐI TỪ VỊ TRÍ CÓ LI ĐỘ X1 ĐẾN LI ĐỘ X2. 3.2.1. phương pháp Bước 1: Xác định các vị trí cho trước trên đường tròn và trên trục M2 M1 ox. Bước 2: Xác định góc quét (sử dụng hệ thức lượng trong tam giác X 2 1 vuông). 2 O X1 Bước 3: Tính -A A x T t  2 2 f * Ví dụ: tìm như hình vẽ: M3 M4 = 1 2 x x 1 1 sin ; sin 2 2 1 A 1 A *Chú ý: Thời gian ngắn nhất để vật đi 7