Sáng kiến kinh nghiệm Áp dụng định lý Vi-ét trong việc giải một số bài toán

doc 15 trang sangkien 11561
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Áp dụng định lý Vi-ét trong việc giải một số bài toán", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docsang_kien_kinh_nghiem_ap_dung_dinh_ly_vi_et_trong_viec_giai.doc

Nội dung text: Sáng kiến kinh nghiệm Áp dụng định lý Vi-ét trong việc giải một số bài toán

  1. áp dụng định lý Vi - ét trong việc giải một số bài toán === A. Phần mở đầu. 1. lý do chọn đề tài. Trong chương trình sách giáo khoa mới Toán lớp 9 THCS, học sinh được làm quen với phương trình bậc hai: Công thức tính nghiệm của phương trình bậc hai, đặc biệt là định lý Viét và ứng dụng của nó trong việc giải toán. Song qua việc giảng dạy Toán 9 tại trường T.H.C.S tôi nhận thấy các em vận dụng hệ thức Viét vào giải toán chưa thật linh hoạt, chưa biết khai thác và sử dụng hệ thức Viét vào giải nhiều loại bài toán, trong khi đó hệ thức Viét có tính ứng dụng rất rộng rãi trong việc giải toán. Đứng trước vấn đề đó, tôi đi sâu vào nghiên cứu đề tài: “áp dụng định lý Vi-ét trong việc giải một số bài toán” với mong muốn giúp cho học sinh nắm vững và sử dụng thành thạo định lý Viét, đồng thời làm tăng khả năng, năng lực học toán và kích thích hứng thú học tập của học sinh. 2. đối tượng và phạm vi nghiên cứu. Trong đề tài này, tôi chỉ đưa ra nghiên cứu một số ứng dụng của định lý Viét trong việc giải một số bài toán thường gặp ở cấp T.H.C.S. Do đó chỉ đề cập đến một số loại bài toán đó là: a) ứng dụng của định lý Viét trong giải toán tìm điều kiện của tham số để bài toán thoả mãn các yêu cầu đặt ra b) ứng dụng của định lý trong giải bài toán lập phương trình bậc hai một ẩn, tìm hệ số của phương trình bậc hai một ẩn. c) ứng dụng của định lý Viét trong giải toán chứng minh. d) áp dụng định lý Viét giải phương trình và hệ phương trình. e) Định lý Viét với bài toán cực trị. 3.tình hình thực tế của học sinh lớp 9 trường thcs Ninh Xuân: Đa số học sinh khối 9 là con em các gia đình thuần nông nên ngoài thời gian học trên lớp nhiều học sinh là lao động chính của gia đình do đó các em giành nhiều thời gian cho việc giúp gia đình làm kinh tế nên giành rất ít thời gian cho việc học. ===-1- Trường THCS Ninh Xuân Giáo viên: Trần Danh Lợi
  2. áp dụng định lý Vi - ét trong việc giải một số bài toán === Mặt khác một số học sinh coi nhẹ, xem thường việc học, lười học dẫn đến việc hổng kiến thức ở các lớp dưới và không nắm vững kiến thức trên lớp. Nhiều học sinh rất hạn chế về khả năng sử dụng ngôn ngữ toán học, khả năng trình bày một bài toán . 4. những việc làm của bản thân Để giúp học sinh nắm vững kiến thức về phương trình bậc hai nhất là việc dùng định lý viét, trong quá trình giảng dạy tôi đã đưa một số bài toán việc sử dụng định lý viét dể giải sẽ dẫn đến kết quả nhanh hơn. B. nội dung. Định lý Viét: 2 Nếu x1, x2 là hai nghiệm của phương trình ax + bx + c = 0 (a 0) thì: b x x 1 2 a c x .x 1 2 a * Hệ quả: (trường hợp đặc biệt) a) Nếu phương trình ax2 + bx + c = 0 (a 0) có a + b + c = 0 thì phương c trình có một nghiệm là: x1 = 1 còn nghiệm kia là: x2 a = b) Nếu phương trình ax2 + bx + c = 0 (a 0) có a - b + c = 0 thì phương c trình có một nghiệm là: x1 = - 1 còn nghiệm kia là: x2 = a u v S * Nếu có hai số u và v thoả mãn điều kiện u.v P thì u, v là hai nghiệm của phương trình: x2 – Sx + P = 0. điều kiện để có hai số u, v là: S2 – 4P 0. ===-2- Trường THCS Ninh Xuân Giáo viên: Trần Danh Lợi
  3. áp dụng định lý Vi - ét trong việc giải một số bài toán === Sau đây là một số ví dụ minh hoạ cho việc ứng dụng của định lý Viét trong giải một số dạng toán. I. ứng dụng của định lý viét trong giải toán tìm điều kiện của tham số để bài toán thoả mãn các yêu cầu đặt ra. 1. Các ví dụ: Ví dụ 1: Tìm giá trị của m để các nghiệm x1, x2 của phương trình 2 2 2 mx - 2(m - 2)x + (m - 3) = 0 thoả mãn điều kiện x1 x2 1 Bài giải: Điều kiện để phương trình có hai nghiệm (phân biệt hoặc nghiệm kép): m 0 ; ' ≥ 0 ' = (m - 2)2 - m(m - 3) = - m + 4 ' 0 m 4. Với 0 m 4, theo định lý Viét, các nghiệm x 1; x2 của phương trình có liên hệ: 2(m 2) m 3 x1 + x2 = ; x1.x2 = m m 2 2 2 2 4(m 2) 2(m 3) Do đó: 1 = x x = (x1 + x2) - 2x1x2 = - 1 2 m2 m m2 = 4m2 - 16m + 16 - 2m2 + 6m m2 - 10m + 16 = 0 m = 2 hoặc m = 8 Giá trị m = 8 không thoả mãn điều kiện 0 m 4 2 2 Vậy với m = 2 thì x1 x2 = 1 Ví dụ 2: Cho phương trình x 2 - 2(m - 2)x + (m2 + 2m - 3) = 0. Tìm m để 1 1 x1 x2 phương trình có 2 nghiệm x1, x2 phân biệt thoả mãn x1 x2 5 Bài giải: ===-3- Trường THCS Ninh Xuân Giáo viên: Trần Danh Lợi
  4. áp dụng định lý Vi - ét trong việc giải một số bài toán === Δ' ( (m 2))2 (m2 2m 3) 0(1) x .x 0 (2) Ta phải có: 1 2 1 1 x1 x2 (3) x1 x2 5 (1) ' = m2 - 4m + 4 - m2 - 2m + 3 = - 6m + 7 > 0 m < 7 6 (2) m2 + 2m - 3 0 (m - 1)(m + 3) 0 m 1; m - 3 x1 x2 x1 x2 (3) (x1 x2 )(5 x1.x2 ) 0 x1.x2 5  Trường hợp: x1 + x2 = 0 x1 = - x2 m = 2 không thoả mãn điều kiện (1)  Trường hợp: 5 - x1.x2 = 0 x1.x2 = 5 Cho ta: m2 + 2m - 3 = 5 (m - 2)(m + 4) = 0 m 2 (loại) m 4 (thoả mãn ĐK) Vậy với m = - 4 phương trình đã cho có 2 nghiệm x1, x2 phân biệt thoả mãn 1 1 x x 1 2 x1 x 2 5 Ví dụ 3: Cho phương trình: mx2 - 2(m + 1)x + (m - 4) = 0 (m là tham số). a) Xác định m để các nghiệm x1; x2 của phương trình thoả mãn x1 + 4x2 = 3 b) Tìm một hệ thức giữa x1; x2 mà không phụ thuộc vào m Bài giải: 2 (m 1) (1) x x 1 2 m m 4 (2) x1 .x 2 a) Ta phải có: m (3) x1 4 x 2 3 m 0  (4) 2  ' ( (m 1) m (m 4 ) 0  m 2 5m 8 Từ (1) và (3) tính được: x ; x 2 3m 1 3m ===-4- Trường THCS Ninh Xuân Giáo viên: Trần Danh Lợi
  5. áp dụng định lý Vi - ét trong việc giải một số bài toán === (m 2)(5m 8) m 4 Thay vào (2) được 2m2 - 17m + 8=0 9m2 m 2 Giải phương trình 2m - 17m + 8 = 0 được m = 8; m = 1 thoả mãn điều kiện (4). 2 1 Vậy với m = 8 hoặc m = thì các nghiệm của phương trình thoả mãn x 2 1 + 4x2 = 3. b) Theo hệ thức Viét: 2 x1 + x2 = 2 + m 4 x1 + x2 = 1 - (*) m 2 Thay = x1 + x2 - 2 vào (*) được x1x2 = 1 - 2(x1 + x2 - 2) m Vậy x1.x2 = 5 - 2(x1 + x2) Ví dụ 4: Với giá trị nào của m thì hai phương trình sau có ít nhất một nghiệm chung: x2 + 2x + m = 0 (1) x2 + mx + 2 = 0 (2) Bài giải: Gọi x0 là nghiệm chung nào đó của 2 phương trình khi đó ta có 2 x0 2x0 m 0 2 x0 mx0 2 0 Trừ theo từng vế hai phương trình ta được (m - 2)x0 = m - 2 Nếu m = 2 cả hai phương trình là x2 + 2x + 2 = 0 vô nghiệm Nếu m 2 thì x0 = 1 từ đó m = - 3 2 Với m = - 3: (1) là x + 2x – 3 = 0; có nghiệm x1 = 1 và x2 = - 3 2 Và (2) là x - 3x + 2 = 0; có nghiệp x3 = 1 và x4 = 2 Rõ ràng với m = - 3 thì hai phương trình có nghiệm chung x = 1. ===-5- Trường THCS Ninh Xuân Giáo viên: Trần Danh Lợi
  6. áp dụng định lý Vi - ét trong việc giải một số bài toán === 2. Bài tập: Bài 1: Cho phương trình x2 - (m + 3)x + 2(m + 1) = 0 (1) Tìm giá trị của tham số m để phương trình có (1) có nghiệm x1 = 2x2. Bài 2: Cho phương trình mx2 - 2(m + 1)x + (m - 4) = 0 a) Tìm m để phương trình có nghiệm. b) Tìm m để phương trình có 2 nghiệm trái dấu. Khi đó trong hai nghiệm, nghiệm nào có giá trị tuyệt đối lớn hơn? c) Xác định m để các nghiệm x1; x2 của phương trình thoả mãn: x1 + 4x2 = 3. d) Tìm một hệ thức giữa x1, x2 mà không phụ thuộc vào m. Bài 3: a) Với giá trị nào m thì hai phương trình sau có ít nhật một nghiệm chung. Tìm nghiệm chung đó? x2 - (m + 4)x + m + 5 = 0 (1) x2 - (m + 2)x + m + 1 = 0 (2) b) Tìm giá trị của m để nghiệm của phương trình (1) là nghiệm của phương trình (2) và ngược lại. II. ứng dụng của định lý viét trong bài toán lập phương t rình bậc hai một ẩn, tìm hệ số của phương trình bậc hai một ẩn số 1. Các ví dụ: 3 1 1 Ví dụ 1: Cho x1 = ; x2 = 2 1 3 Lập phương trình bậc hai có nghiệm là: x1; x2 3 1 1 1 3 3 1 Ta có: x1 = ; x2 = = 2 1 3 1 3 1 3 2 3 1 1 1 Nên x1.x2 = . = 2 1 3 2 ===-6- Trường THCS Ninh Xuân Giáo viên: Trần Danh Lợi
  7. áp dụng định lý Vi - ét trong việc giải một số bài toán === 3 1 1 x1 + x2 = + = 3 2 1 3 2 1 Vậy phương trình bậc hai có 2 nghiệm: x1; x2 là x - 3 x+ = 0 2 Hay 2x2 - 2 3 x + 1 = 0 Ví dụ 2: Cho phương trình: x2 + 5x - 1 = 0 (1) Không giải phương trình (1), hãy lập một phương trình bậc hai có các nghiệm là luỹ thừa bậc bốn của các nghiệm phương trình (1) Cách giải: Gọi x1; x2 là các nghiệm của phương trình đã cho theo hệ thức viét, ta có: x1 + x2 = -5; x1.x2 = - 1 Gọi y1; y2 là các nghiệm của phương trình phải lập, ta có: 4 4 y1 + y2 = x1 x2 4 4 y1 y2 = x1 .x2 4 4 2 2 2 2 2 Ta có: x1 x 2 = (x1 + x2 ) - 2x1 .x2 = 729 – 2 = 727 4 4 4 4 x1 .x 2 = (x1.x2) = (- 1) = 1 Vậy phương trình cần lập là: y2 - 727y + 1 = 0 Ví dụ 3: Tìm các hệ số p và q của phương trình: x2 + px + q = 0 sao cho hai x1 x2 5 nghiệm x1; x2 của phương trình thoả mãn hệ: 3 3 x1 x2 35 Các giải: Điều kiện = p2 - 4q 0 (*) ta có: x1 + x2 = -p; x1.x2 = q. Từ điều kiện: 2 x1 x 2 5 x x 25 1 2 x3 x3 35 2 2 1 2 x1 x2 x1 x1x2 x2 35 ===-7- Trường THCS Ninh Xuân Giáo viên: Trần Danh Lợi
  8. áp dụng định lý Vi - ét trong việc giải một số bài toán === x x 2 4x x 25 p 1 4q 25 1 2 1 2 2 p 2 q 7 5 x1 x2 2x1x2 x1x2 35 Giải hệ này tìm được: p = 1; q = - 6 và p = - 1; q = - 6 Cả hai cặp giá trị này đều thoả mãn (*) 2) Bài tập: 1 Bài 1: Lập phương trình bậc hai có 2 nghiệm là 3 + 2 và 3 2 Bài 2: Lập phương trình bậc hai thoả mãn điều kiện: 2 x1 x2 k 7 Có tích hai nghiệm: x1.x2 = 4 và + = 2 x1 1 x2 1 k 4 Bài 3: Xác định có số m, n của phương trình: x2 + mx + n = 0 Sao cho các nghiệm của phương trình làm m và n. Iii. ứng dụng của định lý viét trong giải toán chứng minh. 1. Các ví dụ: Ví dụ 1: Cho a, b là nghiệm của phương trình: x 2 + px + 1 = 0 và b, c là nghiệm của phương trình x2 + qx + 2 = 0 Chứng minh: (b - a)(b - c) = pq - 6. Hướng dẫn học sinh giải. Đây không phải là một bài toán chứng minh đẳng thức thông thường, mà đây là một đẳng thức thể hiện sự liên quan giữa các nghiệm của 2 phương trình và hệ số của các phương trình đó. Vì vậy đòi hỏi chúng ta phải nắm vững định lý Viét và vận dụng định lý Viét vào trong quá trình biến đổi vế của đẳng thức, để suy ra hai vế bằng nhau. Cách giải: a,b là nghiệm của phương trình: x2 + px + 1 = 0 b,c là nghiệm của phương trình: x2 + qx + 2 = 0. Theo định lý viét ta có: ===-8- Trường THCS Ninh Xuân Giáo viên: Trần Danh Lợi