SKKN Một số phương pháp phân tích đa thức thành nhân tử

doc 12 trang sangkien 9760
Bạn đang xem tài liệu "SKKN Một số phương pháp phân tích đa thức thành nhân tử", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docskkn_mot_so_phuong_phap_phan_tich_da_thuc_thanh_nhan_tu.doc

Nội dung text: SKKN Một số phương pháp phân tích đa thức thành nhân tử

  1. Sáng kiến kinh nghiệm môn đại số 8. I: đặt vấn đề Năm học 2005 - 2006 tôi được nhà trường phân công giảng bộ môn toán lớp 8. Qua thực tế dạy học kết hợp với dự giờ kiến tập các giáo viên trong trường, thông qua các kỳ thi chất lượng và kỳ thi học sinh giỏi cấp huyện bản thân tôi nhận thấy các em học sinh chưa có kỹ năng thành thạo khi làm các dạng bài tập như: Quy đồng mẫu thức, giải các loại phương trình, rút gọn, tìm giá trị lớn nhất, nhỏ nhất vì lý do để giải được các loại bài tập này cần phải có kỹ năng phân tích các đa thức thành nhân tử. Nếu như các em học sinh lớp 8 không có thủ thuật và kỹ năng phân tích đa thức thành nhân tử thì việc nắm bắt các phương pháp để giải các dạng toán và kiến thức mới trong quá trình học toán là một vấn đề khó khăn. Trong việc giảng dạy bộ môn toán giáo viên cần phải rèn luyện cho học sinh tính tư duy, tính độc lập, tính sáng tạo và linh hoạt, tự mình tìm tòi ra kiến thức mới, ra phương pháp làm toán ở dạng cơ bản như các phương pháp thông thường mà còn phải dùng một số phương pháp khó hơn đó là phải có thủ thuật riêng đặc trưng, từ đó giúp các em có hứng thú học tập, ham mê học toán và phát huy năng lực sáng tạo khi gặp các dạng toán khó. Người thầy giáo trong khi giảng dạy cần rèn luyện cho học sinh của mình với khả năng sáng tạo, ham thích học bộ môn toán và giải được các dạng bài tập mà cần phải thông qua phân tích đa thức thành nhân tử, nâng cao chất lượng học tập, đạt kết quả tốt trong các kỳ thi vì thế tôi chọn đề tài sáng kiến kinh nghiệm "Một số phương pháp phân tích đa thức thành nhân tử" nhằm giúp giúp học sinh của mình nắm vững các phương pháp phân tích đa thức thành phân tử, giúp học sinh phát hiện phương pháp giải phù hợp với từng bài cụ thể ở các dạng khác nhau. II: Những nội dung của công việc: "Một số phương pháp phân tích đa thức thành nhân tử" 1) Nội dung thứ nhất. Giáo viên phải trang bị cho học sinh của mình các đơn vị kiến thức cơ bản như các quy tắc, thành thạo phép nhân đơn thức với đa thức, nhân đa thức với đa thức, phép chia đơn thức cho đơn thức, phép chia đa thức cho đơn thức, chia hai đa thức đã sắp xếp, các quy tắc đổi dấu đa thức, thật thuộc và vận dụng thành thạo các hằng đẳng thức đáng nhớ. - 1 -
  2. Sáng kiến kinh nghiệm môn đại số 8. 2) Nội dung thứ hai. Giáo viên dạy "Các phương pháp phân tích đa thức thành nhân tử" Giáo viên cho học sinh nắm vững bản chất của việc phân tích đa thức thành nhân tử. Định nghĩa: Phân tích đa thức thành nhân tử (thừa số) là biến đổi đa thức thành tích của nhiều đơn thức và đa thức khác. Ví dụ: ym+3 - ym = ym (y3 - 1) = ym(y - 1) (y2 + y + 1) 2.1) Các phương pháp thông thường. + Đặt nhân tử chung. + Dùng hằng đẳng thức. + Nhóm nhiều hạng tử. Trong thực hành giải toán thường phải phối hợp cả ba phương pháp kể trên để có thể phân tích đa thước thành nhân tử. Ví dụ1: Phân tích thành nhân tử. 2 2 M1 = 3a - 3b + a - 2ab + b = (3a - 3b) + (a2 - 2ab + b2) (Nhóm các hạng tử) = 3(a - b) + (a - b)2 (đặt NTC và dùng hằng đẳng thức) = (a - b) (3 + a - b) (Đặt nhân tử chung) Ví dụ 2: Phân tích thành nhân tử. 2 2 M2 = a - b - 2a + 2b = (a2 - b2) - (3a - 2b) (Nhóm các hạng tử) = (a - b) (a + b) - 2(a - b) (Dùng hằng đẳng thức và đặt NTC) = (a -b) (a + b - 2) (Đặt NTC) Để phối hợp nhiều phương pháp trên để phân tích đa thức thành nhân tử cần chú ý các bước sau đây: + Đặt nhân tử chung cho cả đa thức nếu có thể từ đó làm đơn giản đa thức. + Xét xem đa thức có dạng bằng đẳng thức nào không ? - 2 -
  3. Sáng kiến kinh nghiệm môn đại số 8. + Nếu không có nhân tử chung, hoặc không có hằng đẳng thức thì phải nhóm các hạng tử vào từng nhóm thoả mãn điều kiện mỗi nhóm có nhân tử chung, làm xuất hiện nhân tử chung của các nhóm hoặc xuất hiện hằng đẳng thức. Cụ thể các ví dụ sau: Ví dụ 3: Phân tích các đa thức sau thành nhân tử: 2 2 2 M3 = 5a + 3(a + b) - 5b Ta thấy M3 không có dạng hằng đẳng thức, các hạng tử cũng không có nhân tử chung, vậy làm gì để phân tích được. Quan sát kỹ ta thấy hai hạng tử 5a2 - 5b2 có nhân tử chung. Vì vậy ta dùng phương pháp nhóm các hạng tử đầu tiên: 2 2 2 M3 = (5a - 5b ) + 3(a + b) . Sau đó đặt nhân tử chung của nhóm thứ nhất để làm xuất hiện hằng đẳng thức: 2 2 2 M3 = 5(a - b ) + 3 (a + b) Sử dụng hằng đẳng thức ở nhóm đầu làm xuất hiện nhân tử chung của cả hai nhóm là (a + b): 2 M3 = 5(a + b) (a - b) + 3 (a + b) . M3 đã có nhân tử chung là: (a + b). Ta tiếp tục đặt nhân tử chung. M3 = (a + b)[5(a - b) + 3(a + b)] M3 = (a + b)(8a – 2b) Như vậy M3 đã được phân tích thành tích của hai nhân tử (a + b) và (8a - 2b). Ví dụ 4: Phân tích đa thức thành nhân tử. 3 2 3 2 2 M4 = 3x y - 6x y - 3xy - 6xy z - 3xyz + 3xy. Trước hết hãy xác định xem dùng phương pháp nào trước ? Ta thấy các hạng tử đều chứa nhân tử chung 3xy. + Đặt nhân tử chung. 2 2 2 M4 = 3xy (x - 2x - y - 2yz - z + 1) Trong ngoặc có 6 hạng tử hãy xét xem có hằng đẳng thức nào không? - 3 -
  4. Sáng kiến kinh nghiệm môn đại số 8. 2 2 2 + Nhóm hạng tử: M4 = 3 xy x - 2x + 1 ) - (y + 2y z + z  2 2 + Dùng hằng đẳng thức: M4 = 3xy ( x - 1) - ( y + z)  xem xét hai hạng tử trong ngoặc có dạng hằng đẳng thức nào? + Sử dụng hằng đẳng thức hiệu hai bình phương ta có: M4 = 3xy (x + y + z - 1) (x - y - z - 1) Vậy: M4 đã được phân tích các đa thức thành nhân tử. Khi phân tích đa thức thành nhân tử ta cần chú ý quan sát đa thức, linh hoạt phối hợp sử dụng các phương pháp phân tích đa thức thành nhân tử đã học để các bước phân tích được rõ ràng, mạch lạc và triệt để (đa thức không thể phân tích được nữa). 2.2. Một số phương pháp phân tích đa thức khác. Giáo viên trước hết cần cho học sinh sử dụng thành thạo các phương pháp phân tích thành nhân tử thông thường (đã học trong SGK) và kết hợp các phương pháp sau để làm các bài toán khó. + Phương pháp tách hạng tử. + Phương pháp thêm, bớt cùng một hạng tử. + Phương pháp đặt ẩn phụ. + Phương pháp tìm nghiệm của đa thức. + Phương pháp dùng hệ số bất định. + Phương pháp xét giá trị riêng. Cụ thể: 2.2.1: Phương pháp tách hạng tử. Ví dụ 5: Phân tích thành nhân tử đa thức sau: N = a2 - 6a + 8. Cách 1: a2 - 4a - 2a + 8 (Tách - 6a = (- 4a) + (-2a) = (a2 - 4a) - (2a - 8) (Nhóm hạng tử) = a (a - 4) - 2 (a - 4) (Đặt nhân tử chung) = (a - 4) (a - 2) (Đặt nhân tử chung) - 4 -
  5. Sáng kiến kinh nghiệm môn đại số 8. Có thể tách hạng tử tự do tạo thành một đa thức mới có nhiều hạng tử trong đó có thể kết hợp làm xuất hiện hằng đẳng thức hoặc nhân tử chung với các hạng tử còn lại. Cách 2: N = a2 - 6a + 9 - 1 (Tách 8 = 9 - 1) = (a2 - 6a + 9) - 1 (nhóm hạng tử - xuất hiện hằng đẳng thức) = (a - 3)2 - 1 (Sử dụng hằng đẳng thức) = (a - 2) (a + 2) (Dùng hằng đẳng thức và đặt NTC) = (a - 2) ( a - 4) (Đặt NTC) Cách 3: N = a2 - 4a + 4 - 2a + 4 (Tách 8 = 4 + 4, - 6x = - 4a + ( - 2a) = ( a2 - 4a + 4) - ( 2a - 4) (Nhóm hạng tử) = (a - 2)2 - 2(a -2) (Dùng hằng đẳng thức và đặt NTC) = (a - 2) ( a - 4) (Đặt NTC - biến thàng 2 nhân tử) Ta thấy có để tách một hạng tử thành 2 hạng tử khác trong đó 2 cách tách sau là thông dụng nhất; Phương pháp tách 1: Tách hạng tử tự do thành 2 hạng tử sao cho đa thức mới được đưa về hiệu hai bình phương (cách 2) hoặc làm xuất hiện hằng đẳng thức và có nhân tử chung với hạng tử còn lại (cách 3). Phương pháp tách 2: Tách hạng tử bậc nhất thành 2 hạng tử rồi dùng phương pháp nhóm hạng tử và đặt nhân tử chung làm xuất hiện nhân tử chung mới (cách 1) Ví dụ 6: Phân tích tam thức bậc hai: ax2 + bx + c thành nhân tử. Tách hệ số b = b1 + b2 sao cho b1. b2 = a.c Trong thực hành ta làm như sau; + Tìm tích a.c + Phân tích a.c ra thừa số nguyên với mọi cách + Chọn 2 thừa số mà tổng bằng b - 5 -
  6. Sáng kiến kinh nghiệm môn đại số 8. Ngoài ra có thể tách đồng thời cả hai hạng tử (hạng tử tự do và hạng tử bậc nhất) (như cách 3) 2.2.2) Phương pháp thêm bớt hạng tử. 4 Ví dụ 6: Phân tích đa thức P1 = x + 4 thành nhân tử 4 P1 = x + 4 = x4 + 4x2 + 4 - 4x2 (thêm 4x2, bớt 4x2) = (x4 + 4x2 + 4) - 4x2 (nhóm hạng tử) = (x2 + 2)2 - (2x)2 (dùng hằng đẳng thức) = (x2 + 2x + 2) (x2 - 2x + 2) 4 Ví dụ 7: Phân tích đa thức : P2 = a + 64 thành nhân tử. 4 2 2 2 2 P2 = (a + 16a +64) - 16a (thêm 16a , bớt 16a ) = (a2 + 8)2 - (4a)2 = (a2 + 4a + 8) (a2 - 4a + 8) Như vây việc thêm bớt cùng một hạng tử làm xuất hiện hằng đẳng thức rất tiện lợi, song ta cần xem xét thêm, bớt hạng tử nào? để xuất hiện hằng đẳng thức nào? bình phương của 1 tổng hay hiệu hai bình phương thì mới phân tích triệt để được. 2 ở ví dụ 6, P1 đã có bình phương hạng tử (x ) và bình phương hạng tử (2). Vậy muốn là hằng đẳng thức thì còn thiếu 2 lần tích của 2 hạng tử đó. Do đó ta thêm 2.x2.2 = 4x2 thì đồng thời phải bớt 4x2. 2.2.3) Phương pháp đặt ẩn phụ Ví dụ 8: Phân tích thành nhân tử: D = (x2 + x)2 + 4x2 + 4x - 12 D = (x2 + x)2 + 4(x2 + x) - 12 (nhóm – làm xuất hiện nhân tử chung) Ta thấy 2 hạng tử đầu có nhân tử chung là (x2+ x), ta có thể đặt y = x2+ x = x(x + 1) (đổi biến). Khi đó ta có: 2 D1 = y + 4y - 12 - 6 -
  7. Sáng kiến kinh nghiệm môn đại số 8. Ta có thể dùng phương pháp tách hoặc thêm bớt 2 D1 = (y - 2y) + (6y - 12) (Tách 4y = 6y - 2y) D1 = y (y - 2) + 6(y - 2) (đặt nhân tử chung) D1 = (y – 2)(y + 6) (đặt nhân tử chung) Hay D = (x2 + x - 2) (x2 + x + 6) thay lại biến x D đã phân tích thành 2 nhân tử (x2 + x- 2) và (x2 + x+ 6) Việc phân tích tiếp các nhân tử cho triệt để có thể dựa vào các phương pháp đã nêu ở trên. Chú ý có những tam thức không thể phân tích tiếp được như : x2 + x + 6 = (x + 1 )2 + 5 3 . Do vậy không phân tích tiếp được nữa 2 4 Còn x2 + x - 2 = (x2 - 1) + (x - 1) = (x - 1) (x + 2) Khi đó D = (x2+ x + 6) (x - 1) (x + 2). 2.2.4) Phương pháp tìm nghiệm của đa thức. Nguyên tắc: Nếu đa thức ax3 + bx2 + cx+ d (1) có nghiệm thì theo định lý Bơ du ta có: Nếu m là nghiệm của (1) thì m chứa nhân tử (x - m), khi đó dùng phép chia đa thức ta có: ax3 + bx2 + cx + d = (x - m) (a'x2 + b'x + c'), nhân tử bậc hai có thể phân tích tiếp được dựa vào các phương pháp nêu ở trên. Các phương pháp tìm nghiệm của đa thức bậc 3: + Nếu tổng các hệ số: a + b + c + d = 0 đa thức có nghiệm x = 1. đa thức chứa nhân tử chung (x - 1) + Nếu tổng các hệ số bậc chẵn bằng tổng hệ số bậc lẻ tức là a - c = b +d đa thức có x = -1. đa thức chứa nhân tử chung (x + 1) + Nếu không xét được tổng các hệ số như trên thì ta xét các ước của hệ số tự do d (hệ số không đổi). Nếu ước nào của d làm cho đa thức có giá trị bằng 0 thì ước đó là nghiệm của đa thức. Ví dụ 9: Phân tích đa thức thành nhân tử. 3 2 E1 = x + 3x - 4 xét tổng các hệ số ta thấy. a + b + c = 1 + 3 + (-4) = 0 x1 = 1 2 E1 = (x - 1) (x + 4x + 4) chia E1 Cho (x - 1) - 7 -