Sáng kiến kinh nghiệm Nâng cao chất lượng học sinh giỏi Lớp 8

doc 7 trang sangkien 30/08/2022 9520
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Nâng cao chất lượng học sinh giỏi Lớp 8", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docsang_kien_kinh_nghiem_nang_cao_chat_luong_hoc_sinh_gioi_lop.doc

Nội dung text: Sáng kiến kinh nghiệm Nâng cao chất lượng học sinh giỏi Lớp 8

  1. phòng gd - đt huyện đông hưng cộng hoà xã hội chủ nghĩa việt nam trường thcs đông hoàng Độc lập - Tự do - Hạnh phúc ===  === sáng kiến kinh nghiệm nâng cao chất lượng học sinh giỏi lớp 8 i. cơ sở lý luận Xuất phát từ mục tiêu đào tạo của Bộ giáo dục - Đào tạo và sự đổi mới phương pháp dạy học nên đòi hỏi mỗi giáo viên phải không ngừng học tập và nghiên cứu khoa học để đáp ứng những yêu cầu mới trong tình hình mới. Chương trình Toán lớp 8, phần “ Chương trình chứa ẩn trong dấu giá trị tuyệt đối”- dành cho học sinh khá - giỏi là một trong những phần khó. Muốn nắm được các cách giải của dạng toán này học sinh phải nắm vững định nghĩa giá trị tuyệt đối. Nhiều học sinh gặp trở ngại khi giải dạng toán này, lúng túng khi giải bài toán có dấu giá trị tuyệt đối. Chính vì lý do trên tôi mạnh dạn nghiên cứu và đưa ra sáng kiến “Phương trình chứa ẩn trong dấu giá trị tuyệt đối”. Với mong muốn thiết thực giúp học sinh hiểu bài và làm bài tốt hơn. Hi vọng sẽ đem lại kết quả tốt cho các em. ii. Nội dung sáng kiến Để giải các phương trình chứa ẩn trong dấu giá trị tuyệt đối, cần khử dấu giá trị tuyệt đối. Nhớ lại kiến thức: Giá trị tuyệt đối của một biểu thức bằng chính nó nếu biểu thức không âm, bằng số đối của nói nếu biểu thức âm: A A nếu A 0 -A nếu A<0 1
  2. * Phương pháp 1: Phương pháp chia khoảng trên trục số. Để khử dấu giá trị tuyệt đối, cần xét giá trị của biểu làm cho biểu thức không âm hay âm. Nếu biểu thức nằm trong dấu giá trị tuyệt đối là nhị thức bậc nhất, ta cần nhớ định lý sau: - Định lý về dấu của nhị thức bậc nhất ax + b (a 0) Nhị thức ax + b (a 0) - Cùng dấu với a với các giá trị của x lớn hơn nghiệm của nhị thức. - Trái dấu với a với các giá trị của x nhỏ hơn nghiệm của nhị thức. Chứng minh: Gọi x0 là nghiệm của nhị thức ax + b thì: b ax b b . Xét x x x0 a a a x0 ax b - Nếu x > x0 thì x – x0 > 0 0 ax b cùng dấu với a. a ax b - Nếu x < x0 thì x – x0< 0 0 ax b trái dấu với a. a Ví dụ 1: Giải phương trình 2x 1 2x 5 4 (1) Lời giải: Lập bảng khử dấu giá trị tuyệt đối. 1 5 x 2 2 2x 1 - 2x + 1 0 2x – 1 2x – 1 2x 5 - 2x + 5 - 2x +5 0 2x - 5 Vế trái - 4x + 6 4 4x - 6 2
  3. Từ đó ta xét 3 trường hợp sau: 1 a) xét x 2 1 (1) Trở thành - 4x + 6 = 4 x , không phụ thuộc khoảng đang xét. 2 1 5 b) Xét x 2 2 1 5 (1) Trở thành 4 = 4 đúng với mọi x thuộc khoảng đang xét tức là: x 5 2 5 c) Xét x 2 5 (1) trở thành 4x – 6 = 4 x thuộc khoảng đang xét. 2 1 5 Kết luận: Nghiệm của phương trình (1) là x 2 2 * Phương pháp 2: Phương pháp biến đổi tương đương Ta áp dụng hai phép biến đổi cơ bản sau: b 0 (1) a b a b a b a b (2) a b a b Ví dụ 2: Giải phương trình: x 1 3x 5 (2) Lời giải: áp dụng phép biến đổi thứ hai ta có: x 2 x 1 3x 5 (2) 3 x 1 3x 5 x 2 3
  4. 3 Kết luận: Phương trình (2) có hai nghiệm: x 2; x 1 2 2 Nhận xét: Ta có thể sử dụng phương pháp 1 để giải phương trình (2). * Phương pháp 3: Phương pháp đặt ẩn phụ: Ví dụ 3: Giải phương trình: x 2 5x 5 2x 2 10x 11 (3) Lời giải: (3) x 2 5x 5 2 x 2 5x 5 1 Đặt x 2 5x 5 t thì phương trình trở thành t 2t 1 1 t 2 2t 1 0 1 t 2t 1 t t 1 3 t 2t 1 t 1 2 2 x 2 x 5x 2 1 x 5x 6 0 x 3 * Phương pháp 4: Sử dụng đồ thị: Nguyên tắc: Nghiệm của phương trình f(x) = g(x) chính là hoành độ điểm chung của hai đồ thị y = f(x) và y – g(x). Ví dụ 4: Biện luận số nghiệm của phương trình: x 1 x 1 x m Lời giải: Trước hết ta vẽ đồ thị hàm số: y x 1 x 1 x 4
  5. + Lập bảng khử dấu giá trị tuyệt đối: x -1 0 1 x 1 -x + 1 -x + 1 -x + 1 0 x – 1 x 1 -x – 1 x + 1 x + 1 x + 1 0 x -x -x 0 x x y -3x 3 -x + 2 2 x + 2 3 3x Vẽ đồ thị trên từng khoảng chú ý các điểm đặc biệt: A(-1;3) ; B(0;2) ; C(1;3); Số nghiệm của phương trình đúng bằng số điểm chung của đường thẳng y = m với đồ thị vừa vẽ. y 3 A C B 2 -1 0 1 x Từ đồ thị ta có : • Nếu m 2 thì phương trình có hai nghiệm phân biệt. 5
  6. * Phương pháp 5: Sử dụng bất đẳng thức: Nguyên tắc: Sử dụng bất đẳng thức để so sánh f(x) và g(x). Từ đó tìm ra nghiệm của phương trình f(x) = g(x) Ví dụ 5: Giải phương trình: x 20035 x 2004 7 1 Giải Kiểm tra ngay x = 2003 và x = 2004 là các nghiệm của phương trình. • Nếu x > 2004 thì x – 2003 > 1 nên x 2003 1 x 2003 5 >1 x 2003 5 x 2004 7 1 Chứng tỏ phương trình không có nghiệm thoả mãn x > 2004. • Nếu x < 2003 thì x – 2004 < -1 nên x 2004 1 x 2004 7 1 x 2003 5 x 2004 7 1. Chứng tỏ x < 2003 không là nghiệm. • Nếu 2003 < x < 2004 thì: 0 x 2003 1 1 x 2004 0 x 2003 5 x 2003 x 2003 Nên 7 x 2004 x 2004 2004 x Do đó x 2003 5 x 2004 7 x 2003 2004 x 1 Chứng tỏ 2003 < x < 2004 cũng không thoả mãn phương trình. Tóm lại:Phương trình chỉ có 2 nghiệm đã kiểm tra. Chú ý: Ví dụ 1 có thể giải như sau: 2x 1 2x 5 2x 1 5 2x 2x 1 5 2x 4 1 5 Đẳng thức xảy ra 2x 1 5 2x 0 x 2 2 Một số bài tập giải theo các phương pháp vừa nêu. 6
  7. Bài 1: Giải các phương trình 1) 3 x 1 2 x 2 x x 1 x 2 2) x 1 x 2 x x 2 3) 1 x 1 1 Bài 2: Tìm m để phương trình: x 2 2x m x 1 m 2 0 có nghiệm. Bài 3: Với giá trị nào của tham số m phương trình sau có nghiệm duy nhất: x 3 2x m 1 * bài học rứt ra từ sáng kiến Muốn nâng cao chất lượng học sinh khá, giỏi Toán 8 bản thân giáo viên phải nắm chắc kiến thức cơ bản, tìm tòi sáng tạo, phát hiện ra nhiều phương pháp giải hay. Làm việc nhiệt tình, có khoa học áp dụng phương pháp dạy học mới. Yêu cầu học sinh phải chăm học, say sưa học môn Toán. Có ý thức tìm nhiều lời giải hay cho những bài tập, bài toán khó. Do thời gian và điều kiện còn nhiều hạn chế nên không thể tránh khỏi những thiếu sót. Rất mong sự giúp đỡ đóng góp ý kiến của đồng nghiệp để tôi tiếp tục học hỏi, nâng cao chuyên môn của mình. Tôi xin chân thành cảm ơn! Đông Hoàng, ngày 6 tháng 6 năm 2008 Người viết Phí Ngọc Thi 7