SKKN Rèn kỹ năng giải bài toán bằng cách lập phương trình cho học sinh Lớp 8 trường THCS Bình Lư

doc 13 trang sangkien 10520
Bạn đang xem tài liệu "SKKN Rèn kỹ năng giải bài toán bằng cách lập phương trình cho học sinh Lớp 8 trường THCS Bình Lư", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docskkn_ren_ky_nang_giai_bai_toan_bang_cach_lap_phuong_trinh_ch.doc

Nội dung text: SKKN Rèn kỹ năng giải bài toán bằng cách lập phương trình cho học sinh Lớp 8 trường THCS Bình Lư

  1. PHẦN MỞ ĐẦU I. Lý do chọn sáng kiến Trong quá trình giảng dạy toán tại trường THCS tôi thấy dạng toán giải bài toán bằng cách lập phương trình luôn luôn là một trong những dạng toán cơ bản. Dạng toán này xuyên suốt trong chương trình toán THCS, một số giáo viên chưa chú ý đến kỹ năng giải bài toán bằng cách lập phương trình cho học sinh mà chỉ chú trọng đến việc học sinh làm được nhiều bài, đôi lúc biến việc làm thành gánh nặng với học sinh. Còn học sinh đại đa số chưa có kỹ năng giải dạng toán này, cũng có những học sinh biết cách làm nhưng chưa đạt được kết quả cao vì: Thiếu điều kiện hoặc đặt điều kiện không chính xác; không biết dựa vào mối liên hệ giữa các đại lượng để thiết lập phương trình; lời giải thiếu chặt chẽ; giải phương trình chưa đúng; quên đối chiếu điều kiện; thiếu đơn vị Để giúp học sinh sau khi học hết chương trình toán THCS có cái nhìn tổng quát hơn về dạng toán giải bài toán bằng cách lập phương trình, nắm chắc và biết cách giải dạng toán này. Rèn luyện cho học sinh khả năng phân tích, xem xét bài toán dưới dạng đặc thù riêng lẻ. Khuyến khích học sinh tìm hiểu cách giải để học sinh phát huy được khả năng tư duy linh hoạt, nhạy bén khi tìm lời giải bài toán. Tạo cho học sinh lòng tự tin, say mê, sáng tạo, không còn ngại ngùng đối với việc giải bài toán bằng cách lập phương trình, thấy được môn toán rất gần gũi với các môn học khác và thực tiễn trong cuộc sống. Giúp giáo viên tìm ra phương pháp dạy học phù hợp với mọi đối tượng học sinh. Vì những lý do đó tôi chọn sáng kiến kinh nghiệm: ''Rèn kỹ năng giải bài toán bằng cách lập phương trình cho học sinh lớp 8 trường THCS Bình Lư”. II. Phạm vi và đối tượng nghiên cứu 1. Phạm vi nghiên cứu 35 học sinh lớp 8 trường THCS Bình Lư, huyện Tam Đường. 2. Đối tượng nghiên cứu Rèn kỹ năng giải bài toán bằng cách lập phương trình III. Mục đích nghiên cứu Đánh giá thực trạng kỹ năng giải bài toán bằng cách lập phương trình của học sinh lớp 8 trường THCS Bình Lư. Đề xuất một số kỹ năng giải bài toán bằng cách lập phương trình mang lại hiệu quả nhằm nâng cao chất lượng dạy học cho học sinh lớp 8 trường THCS Bình Lư. 1
  2. IV. Điểm mới trong kết quả nghiên cứu Tìm ra các kỹ năng giải toán mới hoặc các kỹ năng giải toán cũ song có cách vận dụng mới trong việc giải bài toán bằng cách lập phương trình cho học sinh lớp 8. Giáo viên: biết thêm một số kỹ năng giải bài toán bằng cách lập phương trình và vận dụng với từng đối tượng học sinh. Học sinh: chủ động chiếm lĩnh kiến thức, mạnh dạn, tự tin, phát triển trí tuệ của bản thân; xác định được điều kiện hoặc đặt điều kiện chính xác; biết dựa vào mối liên hệ giữa các đại lượng để thiết lập phương trình; lời giải chặt chẽ; giải phương trình đúng; biết đối chiếu điều kiện; đủ đơn vị 2
  3. PHẦN NỘI DUNG I. Cơ sở lý luận Xuất phát từ mục tiêu Giáo dục trong giai đoạn hiện nay là phải đào tạo ra con người có trí tuệ phát triển, giàu tính sáng tạo và có tính nhân văn cao. Định hướng này đã được pháp chế hoá trong luật giáo dục điều 24 mục II đã nêu ''Phương pháp giáo dục phổ thông phải phát huy tính tích cực, tự giác chủ động sáng tạo của học sinh, phải phù hợp với đặc điểm của từng môn học, rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn, tác động đến tình cảm đem lại niềm vui hứng thú học tập cho học sinh" Rèn là: luyện với lửa cho thành khí cụ. Kĩ năng là: là năng lực khéo léo khi làm việc nào đó. Rèn kĩ năng là: rèn và luyện trong công việc để trở thành khéo léo, chính xác khi thực hiện công việc ấy. Rèn kĩ năng giải toán là: rèn và luyện trong việc giải các bài toán để trở thành khéo léo, chính xác khi tìm ra kết quả bài toán. Giải toán bằng cách lập phương trình là: Phiên dịch bài toán từ ngôn ngữ thông thường sang ngôn ngữ đại số rồi dùng các phép biến đổi đại số để tìm ra đại lượng chưa biết thoả mãn điều kiện bài cho. II. Thực trạng của vấn đề Khi giải bài toán bằng cách lập phương trình học sinh thường giải thiếu điều kiện hoặc đặt điều kiện không chính xác. Không biết dựa vào mối liên hệ giữa các đại lượng để thiết lập phương trình, lời giải thiếu chặt chẽ. Giải phương trình chưa đúng, quên đối chiếu điều kiện, thiếu đơn vị Giáo viên chưa có nhiều thời gian và biện pháp hữu hiệu để phụ đạo học sinh yếu kém. Giáo viên nghiên cứu về phương pháp giải bài toán bằng cách lập phương trình song mới chỉ dừng lại ở việc vận dụng các bước giải một cách nhuần nhuyễn chứ chưa chú ý đến việc phân loại dạng toán, kỹ năng giải từng loại và những điều cần chú ý khi giải từng loại đó. Trong quá trình giảng dạy nhiều giáo viên trăn trở là làm thế nào để học sinh phân biệt được từng dạng và cách giải từng dạng đó. Học sinh lớp 8 trường THCS Bình Lư, huyện Tam Đường, tỉnh Lai Châu. Tổng số có 01 lớp với 35 học sinh, chất lượng về học lực bộ môn toán thấp cụ thể qua bài kiểm tra khảo sát chất lượng đầu tháng 9 năm 2011 như sau: Tổng Điểm số học Giỏi Khá T. Bình Yếu Kém Lớp sinh 8 35 2 3 16 9 5 3
  4. III. Các biện pháp đã tiến hành để giải quyết vấn đề 1. Tổ chức khảo sát chất lượng đầu năm Ngay từ đầu năm học sau khi nhận lớp tôi đã tiến hành khảo sát chất lượng để phân loại đối tượng học sinh. Qua kết quả khảo sát giúp giáo viên nhận biết được khả năng nhận thức của học sinh. 2. Hướng dẫn học sinh giải bài toán bằng cách lập phương trình * Để giải bài toán bằng cách lập phương trình phải dựa vào quy tắc chung gồm các bước như sau: Bước 1: Lập phương trình (gồm các công việc sau): - Chọn ẩn số (ghi rõ đơn vị) và đặt điều kiện thích hợp cho ẩn. - Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. - Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình: Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. * Yêu cầu về giải một bài toán - Lời giải không phạm sai lầm và không có sai sót mặc dù nhỏ: Trước tiên giáo viên hướng dẫn học sinh hiểu đề toán và trong quá trình giải không có sai sót về kiến thức, phương pháp suy luận, kỹ năng tính toán, ký hiệu, điều kiện của ẩn; rèn cho học sinh có thói quen đặt điều kiện của ẩn và xem xét đối chiếu kết quả với điều kiện của ẩn xem đã hợp lý chưa. - Lời giải bài toán lập luận phải có căn cứ chính xác: Đó là trong quá trình thực hiện từng bước có lô gíc chặt chẽ với nhau, có cơ sở lý luận chặt chẽ. Đặc biệt phải chú ý dến việc thoả mãn điều kiện nêu trong giả thiết. Xác định ẩn khéo léo, mối quan hệ giữa ẩn và các dữ kiện đã cho làm nổi bật được ý phải tìm. Nhờ mối tương quan giữa các đại lượng trong bài toán thiết lập được phương trình từ đó tìm được giá trị của ẩn. Muốn vậy cần cho học sinh hiểu được đâu là ẩn, đâu là dữ kiện, đâu là điều kiện, có thể thoả mãn được điều kiện hay không, điều kiện có đủ để xác định được ẩn không? Từ đó xác định hướng đi, xây dựng được cách giải. - Lời giải phải đầy đủ và mang tính toàn diện: Hướng dẫn học sinh không được bỏ sót khả năng chi tiết nào. Không được thừa nhưng cũng không được thiếu. Hướng dẫn học sinh cách kiểm tra lại lời giải xem đã đầy đủ chưa? Kết quả của bài 4
  5. toán đã là đại diện phù hợp chưa? Nếu thay đổi điều kiện bài toán rơi vào trường hợp đặc biệt thì kết quả vẫn luôn luôn đúng. - Lời giải bài toán phải đơn giản: Bài giải phải đảm bảo được 3 yêu cầu trên không sai sót. Có lập luận, mang tính toàn diện và phù hợp kiến thức, trình độ của học sinh, đại đa số học sinh hiểu và thực hiện được. - Lời giải phải trình bày khoa học: Hướng dẫn học sinh hiểu được mối liên hệ giữa các bước giải trong bài toán phải lôgíc, chặt chẽ với nhau. Các bước sau được suy ra từ các bước trước nó đã được kiểm nghiệm, chứng minh là đúng hoặc những điều đã biết từ trước. - Lời giải bài toán phải rõ ràng ,đầy đủ, có thể nên kiểm tra lại: Lưu ý đến việc giải các bước lập luận, tiến hành không chồng chéo nhau, phủ định lẫn nhau, kết quả phải đúng. Muốn vậy cần hướng dẫn cho học sinh có thói quen sau khi giải xong cần thử lại kết quả và tìm hết các nghiệm của bài toán, tránh bỏ sót nhất là đối với phương trình bậc hai. 3. Phân loại dạng toán giải bài toán bằng cách lập phương trình và các giai đoạn giải một bài toán * Phân loại dạng toán giải bài toán bằng cách lập phương trình Trong số các bài tập về giải bài toán bằng cách lập phương trình ta có thể phân loại thành các dạng như sau: - Dạng toán liên quan đến số học. - Dạng toán về công việc làm chung, làm riêng. - Dạng toán về tỉ lệ chia phần. - Dạng toán có chứa tham số. * Các giai đoạn giải một bài toán - Giai đoạn 1: Đọc kỹ đề bài rồi ghi giả thiết, kết luận của bài toán - Giai đoạn 2: Nêu rõ các vấn đề liên quan để lập phương trình. Tức là chọn ẩn như thế nào cho phù hợp, điều kiện của ẩn thế nào cho thoả mãn. - Giai đoạn 3: Lập phương trình. Dựa vào các quan hệ giữa ẩn số và các đại lượng đã biết, dựa vào các công thức, tính chất để xây dựng phương trình, biến đổi tương đương để đưa phương trình đã xây dựng về phương trình ở dạng đã biết, đã giải được. 5
  6. - Giai đoạn 4: Giải phương trình. Vận dụng các kỹ năng giải phương trình đã biết để tìm nghiệm của phương trình. - Giai đoạn 5: Nghiên cứu nghiệm của phương trình để xác định lời giải của bài toán. Tức là xét nghiệm của phương trình với điều kiện đặt ra của bài toán, với thực tiễn xem có phù hợp không? Sau đó trả lời bài toán. - Giai đoạn 6: Phân tích biện luận cách giải. Phần này thường để mở rộng cho học sinh tương đối khá, giỏi sau khi đã giải xong có thể gợi ý học sinh biến đổi bài toán đã cho thành bài toán khác bằng cách: Giữ nguyên ẩn số thay đổi các yếu tố khác. Giữ nguyên các dữ kiện thay đổi các yếu tố khác. Giải bài toán bằng cách khác, tìm cách giải hay nhất. 4. Tập trung rèn kỹ năng giải toán bằng cách lập phương trình đảm bảo tính hiệu quả phù hợp với học sinh thông qua các dạng toán 4.1. Dạng toán liên quan đến số học Bài toán: (SGK đại số 8). Một số tự nhiên có hai chữ số, tổng các chữ số bằng . Nếu thêm chữ số 0 vào giữa hai chữ số thì được số lớn hơn số đã cho là 180. Tìm số đã cho. * Hướng dẫn giải: - Để tìm số đã cho tức là ta phải tìm được những thành phần nào (chữ số hàng chục và chữ số hàng đơn vị ). Số đó có dạng như thế nào? - Nếu biết được chữ số hàng chục thì có tìm được chữ số hàng đơn vị không? Dựa trên cơ sở nào? - Sau khi viết chữ số 0 vào giữa hai số ta được một số tự nhiên như thế nào? lớn hơn số cũ là bao nhiêu? * Lời giải Gọi chữ số hàng chục của chữ số đã cho là x , điều kiện 0 < x 7 và x N. Thì chữ số hàng đơn vị của số đã cho là: 7 - x Số đã cho có dạng: x.(7 x) = 10x + 7 - x = 9x + 7 Viết thêm chữ số 0 vào giữa hai chữ số hàng chục và hàng đơn vị ta được số mới có dạng : x0(7 x) = 100x + 7 - x = 99x + 7 Theo bài ra ta có phương trình: ( 99x + 7 ) - ( 9x + 7 ) = 180 90x = 180 x = 2 (Thoả mãn điều kiện). Vậy: chữ số hàng chục là 2 6