Sáng kiến kinh nghiệm Ứng dụng toán xác suất thống kê vào giải toán di truyền học

doc 31 trang sangkien 11960
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Ứng dụng toán xác suất thống kê vào giải toán di truyền học", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docsang_kien_kinh_nghiem_ung_dung_toan_xac_suat_thong_ke_vao_gi.doc

Nội dung text: Sáng kiến kinh nghiệm Ứng dụng toán xác suất thống kê vào giải toán di truyền học

  1. Gi¸o viªn MÉn Hoµng Huy Tr­êng THPT Yªn Phong sè 2 MỞ ĐẦU 1. Lí do chọn chuyên đề Xác suất là bài toán mà từ rất sớm đã được con người quan tâm. Trong hầu hết mọi lĩnh vực đặc biệt trong Di truyền học, việc xác định được khả năng xảy ra của các sự kiện nhất định là điều rất cần thiết. Thực tế khi học về Di truyền có rất nhiều câu hỏi có thể đặt ra: Xác suất sinh con trai hay con gái là bao nhiêu? Khả năng để sinh được những người con theo mong muốn về giới tính hay không mắc các bệnh, tật di truyền dễ hay khó thực hiện? Mỗi người có thể mang bao nhiêu NST hay tỉ lệ máu của ông (bà) nội hoặc ngoại của mình? Vấn đề thật gần gũi mà lại không hề dễ, làm nhưng thường thiếu tự tin. Bài toán xác suất luôn là những bài toán thú vị, hay nhưng khá trừu tượng nên phần lớn là khó. Giáo viên lại không có nhiều điều kiện để giúp học sinh làm quen với các dạng bài tập này chính vì thế mà khi gặp phải các em thường tỏ ra lúng túng, không biết cách xác định, khi làm thiếu tự tin với kết quả tìm được. Nhận ra điểm yếu của học sinh về khả năng vận dụng kiến thức toán học để giải các dạng bài tập xác suất, bằng kinh nghiệm tích lũy được qua nhiều năm giảng dạy phần Di truyền học ở cấp Trung học phổ thông và mục đích chia sẻ với đồng nghiệp nhằm giúp các em có được những kĩ năng cần thiết để giải quyết các dạng bài tập xác suất trong Di truyền học. Tôi có ý tưởng viết chuyên đề “Ứng dụng toán xác suất thống kê vào giải toán Di truyền học” 2. Mục đích nghiên cứu Góp phần nghiên cứu một cách có hệ thống, làm rõ hơn các bài tập ứng dụng lí thuyết xác suất. Xây dụng các nghiên tắc phương pháp giải cho một số loại bài tập di truyền liên quan đến xác suất. Rèn luyện kĩ năng tư duy, phán đoán và phân tích. 3
  2. Gi¸o viªn MÉn Hoµng Huy Tr­êng THPT Yªn Phong sè 2 Nâng cao trình độ chuyên môn phục vụ cho công tác giảng dạy ôn luyện thi học sinh giỏi và luyện thi đại học. 3. Phương pháp nghiên cứu Phương pháp lí thuyết và tổng hợp tài liệu. Các phương pháp logic, quy nạp, diễn dịch. Một số nguyên lí xác suất cơ bản, lí thuyết xác suất trong di truyền học. 4
  3. Gi¸o viªn MÉn Hoµng Huy Tr­êng THPT Yªn Phong sè 2 NỘI DUNG 1. Quy luật di truyền phân ly độc lập 1.1. Phương pháp giải Trong thực tế, nhiều lúc chúng ta có thể gặp những tình huống rất khác nhau. Vấn đề quan trọng là tùy từng trường hơp cụ thể mà chúng ta tìm cách giải quyết hiệu quả nhất. Trước một bài toán xác suất cũng vậy, điều cần thiết đầu tiên là chúng ta phải xác định bài toán thuộc loại nào? Đơn giản hay phức tạp? Có liên quan đến tổ hợp hay không? Khi nào ta nên vân dụng kiến thức tổ hợp ? Kiến thức tổ hợp chỉ áp dụng khi nào các khả năng xảy ra ở mỗi sự kiện có sự tổ hợp ngẫu nhiên, nghĩa là các khả năng đó phải phân ly độc lập. Mặt khác sự phân li và tổ hợp phải được diễn ra một cách bình thường. Mỗi sự kiện có hai hoặc nhiều khả năng có thể xảy ra, xác suất của mỗi khả năng có thể bằng hoặc không bằng nhau: trường hợp đơn giản là xác suất các khả năng bằng nhau và không đổi nhưng cũng có trường hợp phức tạp là xác suất mỗi khả năng lại khác nhau và có thể thay đổi qua các lần tổ hợp. Trong phần này tôi chỉ đề cập đến đến những trường hợp sự kiện có 2 khả năng và xác suất mỗi khả năng không thay đổi qua các lần tổ hợp. Tuy nhiên từ các dạng cơ bản ,chúng ta có thể đặt vấn đề và rèn cho học sinh kĩ năng vận dụng để giải các bài tập phức tạp hơn. Với bài toán xác suất đơn giản, thường không cần vận dụng kiến thức tổ hợp nên giải bằng phương pháp thông thường, dể hiểu và gọn nhất. Nếu vấn đề khá phức tạp, không thể dùng phương pháp thông thường hoặc nếu dùng phương pháp thông thường để giải sẽ không khả thi vì đòi hỏi phải mất quá nhiều thời gian. Chúng ta phải tìm một hướng khác để giải quyết vấn đề thì kiến thức tổ hợp như là một công cụ không thể thiếu được. Do vậy việc nhận dạng bài toán trước khi tìm ra phương pháp giải quyết là vấn đề hết 5
  4. Gi¸o viªn MÉn Hoµng Huy Tr­êng THPT Yªn Phong sè 2 sức quan trọng và cần thiết mà khi dạy cho học sinh Thầy (cô) phải hết sức lưu ý. Với những bài toán tổ hợp tương đối phức tạp trước khi giải cho HS, GV cần phải phân tích từ các trường hợp đơn giản đến phức tạp; chứng minh quy nạp để đi đến công thức tổng quát. Trị số xác suất qua n lần tổ hợp ngẫu nhiên giữa 2 khả năng a và b ở các sự kiện là kết quả khai triển của: n 0 n 0 1 n-1 1 2 n-2 2 n-1 1 n-1 n 0 n (a+b) = Cn a b + Cn a b + Cn a b + + Cn a b + Cn a b Vì các khả năng ở mỗi sự kiện có xác suất bằng nhau và không đổi qua a n-a các lần tổ hợp, vì C n = Cn nên dể thấy rằng trị số xác suất các trường hợp xảy ra luôn đối xứng. 1.2. Bài tập điển hình Ví dụ 1: Chiều cao cây do 3 cặp gen phân ly độc lập, tác động cộng gộp quy định. Sự có mặt mỗi alen trội trong tổ hợp gen làm tăng chiều cao cây lên 5cm. Cây thấp nhất có chiều cao = 150cm. Cho cây có 3 cặp gen dị hợp tự thụ phấn. Xác định: - Tần số xuất hiện tổ hợp gen có 1 alen trội, 4 alen trội. - Khả năng có được một cây có chiều cao 165cm Bài giải a n 1 3 * Tần số xuất hiện : tổ hợp gen có 1 alen trội = C2n / 4 = C6 / 4 = 6/64 a n 4 3 tổ hợp gen có 4 alen trội = C2n / 4 = C6 / 4 = 15/64 - Cây có chiều cao 165cm hơn cây thấp nhất = 165cm – 150cm = 15cm → có 3 alen trội ( 3 5cm = 15cm ) 3 3 * Vậy khả năng có được một cây có chiều cao 165cm = C6 / 4 = 20/64 ♦ Ví dụ 2: Ở đậu Hà lan, tính trạng hạt màu vàng trội hoàn toàn so với tính trạng hạt màu xanh. Tính trạng do một gen quy định nằm trên NST thường. Cho 5 6
  5. Gi¸o viªn MÉn Hoµng Huy Tr­êng THPT Yªn Phong sè 2 cây tự thụ và sau khi thu hoạch lấy ngẫu nhiên mỗi cây một hạt đem gieo được các cây F1. Xác định: a) Xác suất để ở F1 cả 5 cây đều cho toàn hạt xanh? b) Xác suất để ở F1 có ít nhất 1 cây có thể cho được hạt vàng? Bài giải a) Xác suất để ở F1 cả 5 cây đều cho toàn hạt xanh: Ta có SĐL P : Aa x Aa F1 : 1AA , 2Aa , 1aa KH : 3/4 vàng : 1/4 xanh Nếu lấy ngẫu nhiên mỗi cây 1 hạt thì xác suất mỗi hạt lấy ra: 3/4 là hạt vàng, 1/4 là hạt xanh . Đây là trường hợp các sự kiện (phần tử) không đồng khả năng tức có xác suất khác nhau. - Gọi a là xác suất hạt được lấy là màu vàng: a = 3/4 - Gọi b là xác suất hạt được lấy là màu xanh: b = 1/4 Xác suất 5 hạt lấy ra là kết quả của (a + b)5 = a5 + 5a4 b1 + 10a3 b2 + 10a2 b3 + 5a1 b4 + b5 → Có 6 khả năng xảy ra, trong đó 5 hạt đều xanh = b5 = (1/4)5 . Để cả 5 cây F1 đều cho toàn hạt xanh tức cả 5 hạt lấy ra đều là hạt xanh (aa) 5 Vậy xác suất để ở F1 cả 5 cây đều cho toàn hạt xanh = (1/4) b) Xác suất để ở F1 có ít nhất 1 cây có thể cho được hạt vàng: F1 ít nhất có 1 cây cho được hạt vàng đồng nghĩa với trừ trường hợp 5 hạt lấy ra đều xanh (tính chất của 2 biến cố giao) 5 Vậy xác suất để ở F1 có ít nhất 1 cây có thể cho được hạt vàng = 1 – (1/4) . Ví dụ 3: Bệnh bạch tạng ở người do đột biến gen lặn trên NST thường, alen trội tương ứng quy định người bình thường. Một cặp vợ chồng đều mang gen gây bệnh ở thể dị hợp. 7
  6. Gi¸o viªn MÉn Hoµng Huy Tr­êng THPT Yªn Phong sè 2 Về mặt lý thuyết, hãy tính xác suất các khả năng có thể xảy ra về giới tính đối với tính trạng trên nếu họ có dự kiến sinh 2 người con? Bài giải Lập sơ đồ lai theo giả thiết → con của họ: 3/4: bình thường; 1/4: bị bệnh Đây là trường hợp các sự kiện (phần tử) không đồng khả năng tức có xác suất khác nhau. Gọi xác suất sinh con trai bình thường là (A): A =3/4.1/2= 3/8 Gọi xác suất sinh con trai bệnh là (a): a =1/4.1/2= 1/8 Gọi xác suất sinh con gái bình thường là (B): B =3/4.1/2= 3/8 Gọi xác suất sinh con gái bệnh là (b): b =1/4.1/2= 1/8 * Cách 1: Xác suất sinh 2 là kết quả khai triển của (A+a+B+b) 2 = A2 + a2 +B2 + b2 + 2Aa + 2AB + 2Ab + 2aB + 2ab + 2Bb (16 tổ hợp gồm 10 loại) Vậy xác suất để sinh: 1) 2 trai bình thường = A2 = 9/64 2) 2 trai bệnh = a2 = 1/64 3) 2 gái bình thường = B2 = 9/64 4) 2 gái bệnh = b2 = 1/64 5) 1 trai bình thường + 1 trai bệnh = 2Aa = 6/64 6) 1 trai bình thường + 1 gái bình thường = 2AB = 18/64 7) 1 trai bình thường + 1 gái bệnh = 2Ab = 6/64 8) 1 trai bệnh + 1 gái bình thường = 2aB = 6/64 9) 1 trai bệnh + 1 gái bệnh = 2ab = 2/64 10) 1 gái bình thường + 1 gái bệnh = 2Bb = 6/64 * Cách 2: Thực chất các hệ số của biểu thức trên: 1;1;1;1;2;2;2;2;2;2 là số tổ hợp tương ứng của giữa các phần tử nên ở cách làm khác tổng quát hơn là biểu thị xác suất dưới dạng tích của số tổ hợp với xác suất giao của 2 biến cố: cụ thể là 8
  7. Gi¸o viªn MÉn Hoµng Huy Tr­êng THPT Yªn Phong sè 2 2 2 1) 2 trai bình thường = C 2 . A = 9/64 2 2 2) 2 trai bệnh = C 2 . a = 1/64 2 2 3) 2 gái bình thường = C 2 . B = 9/64 2 2 4) 2 gái bệnh = C 2 . b = 1/64 1 5) 1 trai bình thường + 1 trai bệnh = C 2 . Aa = 6/64 1 6) 1 trai bình thường + 1 gái bình thường = C 2 . AB = 18/64 1 7) 1 trai bình thường + 1 gái bệnh = C 2 . Ab = 6/64 1 8) 1 trai bệnh + 1 gái bbình thường = C 2 . aB = 6/64 1 9) 1 trai bệnh + 1 gái bệnh = C 2 . ab = 2/64 1 10) 1 gái bình thường + 1 gái bệnh = C 2 . Bb = 6/64 1.3. Bài tập vận dụng Câu 1: Lai hai thứ bí quả tròn có tính di truyền ổn định,thu được F 1 đồng loạt bí quả dẹt.Cho giao phấn các cây F1 người ta thu được F2 tỉ lệ 9 dẹt : 6 tròn : 1 dài. Cho giao phấn 2 cây bí quả dẹt ở F 2 với nhau. Về mặt lí thuyết thì xác suất để có được quả dài ở F3: A. 1/81 B. 3/16 C. 1/16 D. 4/81 Câu 2: Ở người, bệnh phênylkêtô niệu do đột biến gen gen lặn nằm trên NST thường. Bố và mẹ bình thường sinh đứa con gái đầu lòng bị bệnh phênylkêtô niệu. Xác suất để họ sinh đứa con tiếp theo là trai không bị bệnh trên là A. 1/2 B. 1/4 ` C. 3/4 D. 3/8 Câu 3: Phenylkêtô niệu và bạch tạng ở người là 2 bệnh do đột biến gen lặn trên các NST thường khác nhau. Một đôi tân hôn đều dị hợp về cả 2 cặp gen qui định tính trạng trên. Nguy cơ đứa con đầu lòng mắc 1 trong 2 bệnh trên là A. 1/2 B. 1/4 C. 3/8 D. 1/8 Câu 4: Ở một loài cây, màu hoa do hai cặp gen không alen tương tác tạo ra. Cho hai cây hoa trắng thuần chủng giao phấn với nhau được F 1 toàn ra hoa đỏ. Tạp giao với nhau được F 2 có tỉ lệ 9 đỏ : 7 trắng. Khi lấy ngẫu nhiên một 9
  8. Gi¸o viªn MÉn Hoµng Huy Tr­êng THPT Yªn Phong sè 2 cây hoa đỏ cho tự thụ phấn thì xác suất để ở thế hệ sau không có sự phân li kiểu hình là: A. 9/7 B. 9/16 C. 1/3 D. 1/9 Câu 5: Một cặp vợ chồng có nhóm máu A và đều có kiểu gen dị hợp về nhóm máu. Nếu họ sinh hai đứa con thì xác suất để một đứa có nhóm máu A và một đứa có nhóm máu O là A. 3/8 B. 3/6 C. 1/2 D. 1/4 Câu 6: Chiều cao thân ở một loài thực vật do 4 cặp gen nằm trên NST thường qui định và chịu tác động cộng gộp theo kiểu sự có mặt một alen trội sẽ làm chiều cao cây tăng thêm 5cm. Người ta cho giao phấn cây cao nhất có chiều cao 190cm với cây thấp nhất, được F 1 và sau đó cho F 1 tự thụ. Nhóm cây ở F2 có chiều cao 180cm chiếm tỉ lệ: A. 28/256 B. 56/256 C. 70/256 D. 35/256 Câu 7: Ở đậu Hà lan: hạt trơn trội so với hạt nhăn. Cho đậu hạt trơn lai với đậu hạt nhăn được F1đồng loạt trơn. F1 tự thụ phấn được F2; Cho rằng mỗi quả đậu F2 có 4 hạt. Xác suất để bắt gặp quả đậu có 3 hạt trơn và 1 hạt nhăn là bao nhiêu? A. 3/ 16. B. 27/ 64. C. 9/ 16. D. 9/ 256. Câu 8: Ở cừu, gen qui định màu lông nằm trên NST thường. Gen A qui định màu lông trắng là trội hoàn toàn so với alen a qui định lông đen. Một cừu đực được lai với một cừu cái, cả hai đều dị hợp tử. Cừu non sinh ra là một cừu đực trắng. Nếu tiến hành lai trở lại với mẹ thì xác suất để có một con cừu cái lông đen là bao nhiêu ? A. 1/4 B. 1/6 C. 1/8 D. 1/12 Câu 9: Một đôi tân hôn đều có nhóm máu AB. Xác suất để đứa con đầu lòng của họ là con gái mang nhóm máu là A hoặc B sẽ là: A.6,25% B. 12,5% C. 50% D. 25% 10