Sáng kiến kinh nghiệm Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử
Bạn đang xem tài liệu "Sáng kiến kinh nghiệm Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
sang_kien_kinh_nghiem_mot_so_bien_phap_giup_hoc_sinh_van_dun.doc
Nội dung text: Sáng kiến kinh nghiệm Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử
- Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử PHẦN MỞ ĐẦU 1. Lí do chọn đề tài : Trong các môn học ở trường THCS, môn Toán cũng có vị trí rất quan trọng. Các kiến thức, kỹ năng của môn Toán ở THCS cũng được ứng dụng nhiều trong cuộc sống và là nền tảng cho các lớp trên. Thông qua các hoạt động dạy học Toán giúp học sinh tự nêu các nhận xét hoặc các qui tắc ở dạng khái quát nhất định. Chương trình môn Toán ở lớp 8 là một bộ phận của chương trình môn Toán cấp THCS. Môn Toán 8 có nhiều điều mới mẻ, nâng cao được đưa vào chương trình như: Phân tích đa thức thành nhân tử, nhân và chia đa thức, các phép tính trên phân thức Vì thế muốn có được cơ sở để các em học tốt Toán 8 và các lớp khác được tốt hơn, kiến thức thu được sâu hơn, chắc hơn thì bắt buộc các em phải cố gắng học Toán. Tuy nhiên qua một thời gian giảng dạy môn Toán lớp 8 Tôi nhận thấy các em thường hay gặp nhiều khó khăn trong việc phân tích đa thức thành nhân tử trong đó việc vận dụng các hằng đẳng thức để phân tích đa thức thành nhân tử các em làm sai rất nhiều mà phương pháp phân tích đa thức thành nhân tử là cơ sở để các em học tiếp các phép tính về phân thức, giải phương trình nếu không nắm được cách phân tích đa thức thành nhân tử thì hiển nhiên các em sẽ không nắm được các phép tính của phân thức và cách giải phương trình cụ thể là dạng phương trình tích. Do đó Tôi tiến hành tìm hiểu nguyên nhân trong quá trình giảng dạy Tôi nhận thấy khi sử dụng hằng đẳng thức học sinh của Tôi còn sai nhiều là do các em chưa thuộc hết các hằng đẳng thức và các công thức lũy thừa có liên quan, khi áp dụng thì chưa xác định được công thức phù hợp, chưa nhận biết được chiều áp dụng và các yếu tố của công thức được chọn nên dẫn đến các em còn lúng túng khi phân tích bằng cách dùng hằng đẳng thức. Do đó xuất phát từ những nguyên nhân kể trên để giúp học sinh thực hiện cách phân tích đa thức thành nhân tử bằng hằng đẳng thức Tôi đã tìm ra một số biện pháp nhằm giúp học sinh yếu thực hiện. Đây cũng là những kinh nghiệm trong quá trình giảng dạy của Tôi để đúc kết thành đề tài: “Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử”. 2. Phạm vi nghiên cứu: Đề tài nghiên cứu về “Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử” Đối tượng nghiên cứu: Học sinh lớp 8 trường THCS Người thực hiện: Lê Văn Cọp Trang 1
- Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử PHẦN NỘI DUNG 1. Thuận lợi và khó khăn: 1. 1. Thuận lợi: - Được sự chỉ đạo trực tiếp của lãnh đạo nhà trường, của tổ chuyên môn. - Giáo viên trong tổ nhiệt tình đóng góp ý kiến, trao đổi kinh nghiệm trong các buổi dự giờ thăm lớp. - Đa số học sinh ngoan hiền, lễ phép, biết giúp đở nhau trong học tập. - Trường lớp khang trang thoáng mát, thuận lợi cho việc tiếp thu bài của học sinh. - Học sinh đã làm quen với phương pháp dạy học mới, biết sử dụng thành thạo bảng nhóm, dụng cụ học tập. - Được phân công giảng dạy đúng chuyên nghành. 1. 2. Khó khăn: - Một số phụ huynh chưa thực sự quan tâm đến việc học tập của con em, một số học sinh gia đình khó khăn phải phụ giúp cha mẹ trong việc đồng án do đó các em còn học “theo mùa” gây khó cho việc tiếp thu kiến thức mới. - Nhiều em học sinh do hỏng kiến thức ở lớp dưới nên giáo viên phải mất nhiều thời gian trong việc củng cố lại kiến thức cũ nhằm bước vào kiến thức mới tốt hơn. - Một vài học sinh cá biệt chưa ý thức được việc học tập của mình. - Trường học ở nơi vùng sâu, vùng xa, học sinh có hoàn cảnh khó khăn, học sinh người dân tộc khmer nhiều, khó khăn cho việc giao tiếp, đi lại của các em. 2. Nguyên nhân chính: Thực tế qua giảng dạy ở trường THCS Tôi nhận thấy bên cạnh số đông học sinh học rất tốt về toán, các em vững kiến thức giải thành thạo các bài toán ở sách giáo khoa, còn giải được các bài toán dạng nâng cao. Nhưng vẫn còn một số em học toán còn chậm, tiếp thu kiến thức còn hạn chế, khi thực hành tính toán còn nhầm lẫn, không chính xác. Khi thực hiện việc áp dụng hằng đẳng thức để phân tích đa thức thành nhân tử còn nhầm lẫn, chậm chạp chưa phân biệt được chiều vận dụng cũng như lựa chọn được hằng đẳng thức và xác định các yếu tố của hằng đẳng thức, dẫn đến kết quả bộ môn chưa cao. Cụ thể kết quả khảo sát chất lượng đầu năm học 2013 – 2014 của lớp 8A5 như sau: Người thực hiện: Lê Văn Cọp Trang 3
- Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử - Loại 2: Một nhóm có cả giỏi, khá, trung bình, yếu. Ở nhóm loại 1 Tôi sử dụng khi giao cho các em bài tập thực hành để học sinh làm các bài tập ngang tầm kiến thức của mình. Ở nhóm loại 2 để các em giúp đỡ nhau trong học tập, em khá, giỏi có thể giúp đỡ em trung bình yếu. Cũng thông qua việc liên hệ với giáo viên chủ nhiệm Tôi đã nắm rõ hoàn cảnh và cá tính của từng em để kết hợp với giáo viên chủ nhiệm cùng nhắc nhở các em chuẩn bị đầy đủ dụng cụ học tập, cũng như học thuộc bài trước khi đến lớp. Muốn việc này thành công, thì Tôi đã nghiên cứu trước chương trình Toán 8 (mục tiêu, kiến thức cần đạt) những hạn chế của các em để kết hợp với giáo viên chủ nhiệm và cùng phối hợp với các giáo viên bộ môn khác để giúp các em học tốt môn toán. Để công tác phối hợp giữa nhà trường và gia đình được chặt chẽ, Tôi đã trao đổi với giáo viên chủ nhiệm về những em học yếu môn toán, để giáo viên chủ nhiệm trao đổi với cha mẹ các em về tình hình học tập. Qua đây Tôi nắm được việc học ở nhà của các em để có biện pháp phù hợp với từng em. 3. 2. Lập kế hoạch cho việc soạn giảng: 3. 2. 1. Ôn tập kiến thức liên quan: Qua khảo sát Tôi thấy đa số các em đều chưa thuộc các công thức lũy thừa cho nên Tôi thực hiện ôn lại các công thức lũy thừa như: xn = x.x .x n thừa số x (xy)n = xnyn ; (xm)n = xm.n Cụ thể Tôi cho học sinh phân biệt rõ hai chiều khi vận dụng các công thức lũy thừa ở trên chẳng hạn như: Công thức Chiều xuôi Chiều ngược 1) xn = x.x .x - Tính giá trị của một lũy thừa - Viết gọn tích các thừa số bằng n thừa số x nhau dưới dạng một lũy thừa - Viết lũy thừa một tích thành - Viết tích hai lũy thừa có cùng số 2) (xy)n = xn yn tích hai lũy thừa cùng số mũ mũ dưới dạng một lũy thừa. - Tính giá trị lũy thừa của một - Viết một lũy thừa thành một lũy 3) (xm)n = xm.n lũy thừa thừa có cơ số có dạng một lũy thừa. Để vận dụng cho kiến thức mới tốt Tôi chốt kĩ chiều ngược của các công thức trên thông qua các ví dụ cụ thể như: Người thực hiện: Lê Văn Cọp Trang 5
- Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử của một hiệu. dạng bình phương của một hiệu. - Viết hiệu của hai - Viết tích dưới dạng 3 A2 B2 (A B)(A B) bình phương dưới hiệu của hai bình dạng một tích. phương. - Tính lập phương của - Viết một tổng dưới 4 (A B)3 A3 3A2 B 3AB2 B3 một tổng. dạng lập phương của một tổng. - Tính lập phương của - Viết một tổng dưới 5 (A B)3 A3 3A2 B 3AB2 B3 một hiệu. dạng lập phương của một hiệu. - Viết tổng của hai lập - Viết tích dưới dạng 6 A3 B3 (A B)(A2 AB B2 ) phương dưới dạng tổng của hai lập một tích. phương. - Viết hiệu của hai lập - Viết tích dưới dạng 7 A3 B3 (A B)(A2 AB B2 ) phương dưới dạng hiệu của hai lập một tích. phương. Vì phép tính lũy thừa cũng là phép nhân do đó giáo viên cần chốt lại chiều ngươc của công thức là chiều viết tổng thành tích. Sau đó có thể đưa ra bài tập cụ thể như sau: Viết các đa thức sau thành tích: 1) x 2 4 x 4 2 ) x 2 2 3 )1 8 x 3 4 ) x 3 3 x 2 3 x 1 5 )( x y ) 2 9 x 2 Cho học sinh chuẩn bị trước ở nhà bằng cách vận dụng chiều tổng thành tích của bảy hằng đẳng thức để làm các bài tập nêu trên. 3. 2. 2. Dạy kiến thức mới: Để giúp học sinh nắm vững kiến thức về phân tích đa thức thành nhân tử bằng cách dùng Người thực hiện: Lê Văn Cọp Trang 7
- Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử phương của một tổng hoặc bình phương của một hiệu. + Xét dấu nối các hạng tử có thể loại công thức bình phương của một tổng còn lại công thức bình phương của một hiệu là phù hợp. - Đối với bài 2 có thể hướng dẫn như sau: + Xét bậc đa thức là bậc 2 như vậy loại các công thức ở nhóm lập phương chỉ còn xét 3 công thức ở nhóm bình phương là bình phương của một tổng, bình phương của một hiệu và hiệu của hai bình phương + Xét số lượng hạng tử có thể loại công thức bình phương của tổng và hiệu chỉ còn hiệu của hai bình phương là phù hợp. - Đối với bài 3 có thể hướng dẫn như sau: + Xét bậc đa thức là bậc 3 như vậy loại các công thức ở nhóm bình phương chỉ còn xét 4 công thức ở nhóm lập phương là lập phương của một tổng, lập phương của một hiệu, tổng của hai lập phương và hiệu của hai lập phương + Xét số lượng hạng tử có thể loại công thức lập phương của tổng và hiệu chỉ còn hiệu của hai lập phương và tổng của hai lập phương. + Xét dấu nối các hạng tử có thể loại công thức tổng của hai lập phương còn lại công thức hiệu của hai lập phương là phù hợp. - Các bài tập 4 và 5 còn lại Tôi hướng dẫn tương tự theo qui trình như trên để chọn ra công thức phù hợp. 3. 2. 2. 2. Hướng dẫn học sinh xác định các số A và B của công thức vừa chọn: Để phân tích đa thức thành nhân tử bằng chiều tổng thành tích của hằng đẳng thức thì sau khi đã chọn được công thức phù hợp thì phải xác định chính xác các số A và B của công thức đa số học sinh gặp khó khăn ở bước này cho nên ở bước này Tôi hướng dẫn học sinh như sau: - Căn cứ vào hình dạng các hạng tử của hằng đẳng thức để phân tích các hạng tử của đa thức cho giống rồi xác định A và B tương ứng. - Chọn A2 và B2 để chọn A và B, nếu là công thức bình phương một tổng hoặc hiệu thì cần tính thử tích 2AB rồi chọn A và B - Chọn A3 và B3 để chọn A và B , nếu là công thức lập phương một tổng hoặc hiệu thì cần tính thử tích 3A2 B và 3AB2 rồi chọn A và B - Tóm lại Tôi chốt thành qui trình như sau: Xác định hình dạng hạng tử Chọn A2 và B2 hoặc chọn A3 và B3 để xác định A và B Người thực hiện: Lê Văn Cọp Trang 9
- Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử Ví dụ: Phân tích các đa thức sau thành nhân tử 1) x 2 4 x 4 2 ) x 2 2 3 )1 8 x 3 4 ) x 3 3 x 2 3 x 1 5 ) ( x y ) 2 9 x 2 - Đối với bài 1 ở trên ta đã chọn được công thức phù hợp là công thức bình phương của một hiệu và xác định A = x và B = 2 có thể hướng dẫn học sinh trình bày như sau: 1) x2 4x 4 x2 2.x.2 22 (x 2)2 hoặc làm tắt: x2 4x 4 (x 2)2 - Đối với bài 2 ở trên ta đã chọn được công thức phù hợp là công thức hiệu của hai bình phương và xác định A = x và B = 2 có thể hướng dẫn học sinh trình bày như sau: 2) x2 2 x2 ( 2)2 (x 2)(x 2) hoặc làm tắt: x2 2 (x 2)(x 2) - Đối với bài 3 ở trên ta đã chọn được công thức phù hợp là công thức hiệu của hai lập phương và xác định A =1 và B = 2x có thể hướng dẫn học sinh trình bày như sau: 3) 1 8x3 13 (2x)3 (1 2x)(1 2x 4x2 ) hoặc làm tắt: 1 8x3 (1 2x)(1 2x 4x2 ) - Đối với bài 4 ở trên ta đã chọn được công thức phù hợp là công thức lập phương của một tổng và xác định A = x và B = 1 có thể hướng dẫn học sinh trình bày như sau: 4) x3 3x2 3x 1 x3 3.x2.1 3.x.12 13 (x 1)3 hoặc làm tắt: x3 3x2 3x 1 (x 1)3 - Đối với bài 5 ở trên ta đã chọn được công thức phù hợp là công thức hiệu của hai bình phương và xác định A = x + y và B = 3x có thể hướng dẫn học sinh trình bày như sau: 5) (x y)2 9x2 (x y)2 (3x)2 (x y 3x)(x y 3x) (y 2x)(y 4x) hoặc làm tắt: (x y)2 9x2 (x y 3x)(x y 3x) (y 2x)(y 4x) Sau khi hoàn tất các giải pháp trên Tôi chốt lại thành qui trình phân tích như sau: Vận dụng Chọn hằng Xác định các chiều tổng đẳng thức số A và B thành tích phù hợp tương ứng viết kết quả 3. 2. 3. Dạy kiến thức mới, thường xuyên củng cố kiến thức cũ: Như đã nói ở trên đối với học sinh lớp 8 có một đặc tính tâm lý nhanh nhớ nhưng cũng rất chóng quên (nhất là sau những đợt nghỉ như: nghỉ hè, nghỉ lễ, nghỉ tết). Việc quên kiến thức Người thực hiện: Lê Văn Cọp Trang 11
- Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử chung và phương pháp dùng hằng đẳng thức nói riêng để các em nắm vững nền tảng và học tiếp ở các lớp trên sau này 3. 2. 4. Sử dụng linh hoạt các bài tập cho từng đối tượng học sinh: - Đối với lớp 8 Tôi đang dạy, bên cạnh một số học sinh khá giỏi còn có một tỉ lệ học sinh trung bình yếu cao. Vì vậy việc giao bài tập cho các em cũng cần có sự lựa chọn để phù hợp với trình độ của từng em, để các em hoàn thành được bài tập của mình từ đó có hứng thú trong học tập, có niềm tin sau khi học Toán. Thực hiện các bài tập theo đối tượng học sinh giúp các em yếu nắm vững lại các kiến thức mà các em còn lúng túng hoặc nhầm lẫn. Các em khá giỏi thì có điều kiện nâng cao sự hiểu biết của mình. Ví dụ: Với học sinh khá giỏi Tôi có thể giao cho các em làm các bài tập có sự tư duy ví dụ như các bài tập 43 b, c, d trang 20 (SGK). Phân tích các đa thức sau thành nhân tử 1 1 b) 10x 25 x2 ; c) 8x3 ; d)x2 64y2 8 25 1 Bài tập 45 b trang 20 (SGK). Tìm x, biết x2 x =0 4 Đối với các em học sinh trung bình, yếu thì các em làm bài tập dễ, đơn giản rồi mới nâng cao lên ví dụ như : Điền vào chỗ “?” y2 2.y.? 32 (y ?)2 Sau đó cho các em vận dụng làm bài tập 43a trang 20 (SGK). Phân tích các đa thức sau thành nhân tử : a) x2 6x 9 4. Kết quả: Qua thời gian áp dụng các biện pháp trên đã giúp học sinh của lớp 8A5 mà Tôi đảm nhận năm học 2013 – 2014 này đã biết cách thực hiện phân tích đa thức thành nhân tử bằng cách dùng hằng đẳng thức; các em đã nắm được cách lựa chọn hằng đẳng thức phù hợp và xác định được chiều vận dụng của hằng đẳng thức, vận dụng được các công thức của phép tính lũy thừa để biến đổi, nắm được hai nhóm hằng đẳng thức các em không còn xác định nhầm lẫn các số A và B của hằng đẳng thức. Vì vậy các em đã giải được các bài tập dạng phân tích đa thức thành nhân tử bằng cách dùng hằng đẳng thức. Từ đó nâng cao được chất lượng bộ môn toán ở lớp Tôi giảng dạy. Cụ thể kết quả học kì 1 năm học 2013 – 2014 đạt như sau: Tổng số Giỏi Khá Trung bình Yếu Năm học học sinh SL Tỉ lệ SL Tỉ lệ SL Tỉ lệ SL Tỉ lệ 2013 - 2014 36 5 13, 9 % 8 22, 2% 17 47, 2% 6 16, 7% Người thực hiện: Lê Văn Cọp Trang 13
- Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử PHẦN KẾT LUẬN 1. Bài học kinh nghiệm: Trong quá trình thực hiện sáng kiến. Tôi nhận thấy để học sinh học toán đạt được kết quả cao chúng ta cần: * Đối với giáo viên: - Để giúp học sinh đạt kết quả tốt phần phân tích đa thức thành nhân tử bằng cách dùng hằng đẳng thức. Ngay từ đầu khi bắt đầu nhận lớp thì giáo viên bộ môn cần liên hệ với giáo viên chủ nhiệm lớp để nắm rõ từng đối tượng học sinh, lập ra kế hoạch giảng dạy cho phù hợp giúp học sinh nắm vững kiến thức nhất là học sinh yếu phải được tham gia vào tiết học. - Khi lên lớp giáo viên cần chuẩn bị chu đáo các bài dạy, hướng dẫn học sinh chuẩn bị bài thật kỹ trước khi lên lớp. Trong mỗi tiết dạy, giáo viên phải tích cực, nhiệt tình, truyền đạt kiến thức cho học sinh một cách ngắn gọn, xúc tích. - Bên cạnh đó, giáo viên còn thường xuyên củng cố lại kiến thức cũ để giúp các em trung bình, yếu có dịp học lại các kiến thức mà các em chưa nắm kịp. Đồng thời, giáo viên cần sử dụng linh hoạt các bài tập cho từng đối tượng học sinh, soạn bài tập phù hợp với trình độ của từng em giúp cho các em yếu có niềm tin sau khi học toán. - Ngoài ra giáo viên cần tìm hiểu nguyên nhân vì sao các em không làm được bài để tìm cách giảng dạy thích hợp. Đối với các em học sinh yếu giáo viên cần quan tâm giúp đỡ các em, khuyến khích và động viên đúng lúc các em có tiến bộ dù rất nhỏ. Song không thể thiếu sự hỗ trợ của học sinh khá – giỏi cùng lớp giúp các em có hứng thú khi thực hành toán nhất là dạng phân tích đa thức thành nhân tử bằng cách dùng hằng đẳng thức. * Đối với học sinh: - Các em cần chuẩn bị thật kỹ bài trước khi đến lớp, trong các tiết học cần tập trung lắng nghe thầy, cô giảng bài. - Trong các giờ học cần tích cực đóng góp ý kiến thảo luận xây dựng bài, phát huy tính tích cực của bản thân khi giải các bài tập. - Tổ chức học tập theo nhóm, đôi bạn cùng tiến để cùng nhau tiến bộ. 2. Khả năng ứng dụng của sáng kiến: Qua thời gian áp dụng sáng kiến “Một số biện pháp giúp học sinh vận dụng tốt 7 hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử” vào thực tế giảng dạy trong nhà trường mặc dù chỉ trong một thời gian ngắn nhưng đã mang lại một kết quả khá khả quan. Người thực hiện: Lê Văn Cọp Trang 15